Apidologie

, Volume 44, Issue 3, pp 278–285 | Cite as

New anti-Paenibacillus larvae substances purified from propolis

  • Katarina Bilikova
  • Milena Popova
  • Boryana Trusheva
  • Vassya Bankova
Original article

Abstract

Propolis plays an important role in the exogenous defense of honeybee colony against pathogens. However, the studies dealing with the activity of propolis against bee pathogens are scarce. Poplar propolis extracts demonstrated promising activity against Paenibacillus larvae, the causative agent of American foulbrood. From the same propolis, five individual components and a mixture of caffeates were isolated, and their structures confirmed by spectroscopic data. Among the isolated propolis constituents are flavonoids, ferulic acid esters, and the oxylipin 9-oxo-10(E)-12(Z)-octadecadienoic acid, newly identified as propolis component. These substances were tested for their activity against P. larvae strains. The most active constituents were pinocembrin, 3-O-acetyl pinobanksin, and the caffeate mixture. This is the first communication of antimicrobial activity of individual propolis constituents against P. larvae; their important advantage is the fact that they are naturally present in the hive.

Keywords

poplar propolis anti-AFB agents pinocembrin 3-O-acetyl pinobanskin 9-oxo-10(E)-12(Z)-octadecadienoic acid 

Notes

Acknowledgments

This work was financially supported by the EU-funded 7th Framework Project BEE DOC, Grant Agreement 244956, the Slovak research agency and development DO7RP-0014-10, and the Bulgarian Science Fund, Contract DKOF 7RP 02/15.

Nouvelle substances anti- Paenibacillus larvae purifiées à partir de propolis

Propolis de peuplier / agent anti-pathogène / pinocembrine / pinobanskine / acide 9-oxo-10( E )-12( Z ) octodécadienoïque

Neue Anti- Paenibacillus larvae -Substanzen aus Propolis isoliert

Pappel / Propolis / Pinocembrin / 3- O -Acetyl-Pinobanskin / 9-oxo-10( E )-12( Z )-Octadecensäure / Anti-AFB-Substanzen

References

  1. Antúnez, K., Harriet, J., Gende, L., Magg, M., Eguaras, M., Zunino, P. (2008) Efficacy of natural propolis extract in the control of American Foulbrood. Vet. Microbiol. 131, 324–331PubMedCrossRefGoogle Scholar
  2. Bankova, V. (2005) Recent trends and important developments in propolis research. Evid. Based Complement. Alternat. Med. 2, 29–32PubMedCrossRefGoogle Scholar
  3. Bankova, V. (2009) Chemical diversity of propolis makes it a valuable source of new biologically active compounds. J. ApiProd. ApiMed. Sci. 1, 23–28CrossRefGoogle Scholar
  4. Banskota, A.H., Tezuka, Y., Kadota, S. (2001) Recent progress in pharmacological research of propolis. Phytother. Res. 15, 561–571PubMedCrossRefGoogle Scholar
  5. Bastos, E.M.A.F., Simone, M., Jorge, D.M., Soares, A.E.E., Spivak, M. (2008) In vitro study of the antimicrobial activity of Brazilian propolis against Paenibacillus larvae. J. Invertebr. Pathol. 97, 273–281PubMedCrossRefGoogle Scholar
  6. Burdock, G.A. (1998) Review of the biological properties and toxicity of bee propolis (propolis). Food Chem. Toxicol. 36, 347–363PubMedCrossRefGoogle Scholar
  7. Damiani, N., Fernández, N.J., Maldonado, L.M., Álvarez, A.R., Eguaras, M.J., Marcangeli, J.A. (2010) Bioactivity of propolis from different geographical origins on Varroa destructor (Acari: Varroidae). Parasitol. Res. 107, 31–37PubMedCrossRefGoogle Scholar
  8. Darwish, R.M., Abu Fares, R.J., Abu Zarga, M.H., Nazer, I.K. (2010) Antibacterial effect of Jordanian propolis and isolated flavonoids against human pathogenic bacteria. Afr. J. Biotechnol. 9, 5966–5974Google Scholar
  9. Flesar, J., Havlik, J., Kloucek, P., Rada, V., Titera, D., Bednar, M., Stropnicky, M., Kokoska, L. (2010) In vitro growth-inhibitory effect of plant-derived extracts and compounds against Paenibacillus larvae and their acute oral toxicity to adult honey bees. Vet. Microbiol. 145, 129–133PubMedCrossRefGoogle Scholar
  10. Genersch, E., Forsgren, E., Pentikäinen, J., Ashiralieva, A., Rauch, S., Kilwinski, J., Fries, I. (2006) Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation. Int. J. Syst. Evol. Microbiol. 56, 501–511PubMedCrossRefGoogle Scholar
  11. Ghisalberti, E.L. (1979) Propolis: a review. Bee World 60, 59–84Google Scholar
  12. Iriti, M., Faoro, F. (2007) Review of innate and specific immunity in plants and animals. Mycopathologia 164, 57–64PubMedCrossRefGoogle Scholar
  13. Kujumgiev, A., Bankova, V., Ignatova, A., Popov, S. (1993) Antibacterial activity of propolis, some of its components and their analogs. Pharmazie 48, 785–786PubMedGoogle Scholar
  14. Kujumgiev, A., Tsvetkova, I., Serkedjieva, Y., Bankova, V., Christov, R., Popov, S. (1999) Antibacterial, antifungal and antiviral activity of propolis from different geographic origin. J. Ethnopharmacol. 64, 235–240PubMedCrossRefGoogle Scholar
  15. Kuklev, K.V., Christie, W.W., Durand, T., Rossi, J.C., Vidal, J.P., Kasyanov, S.P., Akulin, V.N., Bezuglov, V.V. (1997) Synthesis of keto- and hydroxydienoic compounds from linoleic acid. Chem. Phys. Lipids 85, 125–134CrossRefGoogle Scholar
  16. Metzner, J., Bekemeier, H., Paintz, M., Schneidewind, E. (1979) Anti-microbial activity of propolis and propolis constituents. Pharmazie 34, 97–102PubMedGoogle Scholar
  17. Mihai, C.M., Mărghitaş, L.A., Dezmirean, D.S., Chirilă, F., Moritz, R.F.A., Schlüns, H. (2012) Interactions among flavonoids of propolis affect antibacterial activity against the honeybee pathogen Paenibacillus larvae. J. Invertebr. Pathol. 110, 68–72PubMedCrossRefGoogle Scholar
  18. Mosblech, A., Feussner, I., Heilmann, I. (2009) Oxylipins: structurally diverse metabolites from fatty acid oxidation. Plant Physiol. Biochem. 457, 511–517CrossRefGoogle Scholar
  19. Prost, I., Dhondt, S., Rothe, G., Vicente, J., Rodriguez, M.J., Kift, N., Carbonne, F., Griffiths, G., Esquerre-Tugaye, M.-T., Rosahl, S., Castresana, C., Hamberg, M., Fournier, J. (2005) Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol. 139, 1902–1913PubMedCrossRefGoogle Scholar
  20. Sforcin, J.M., Bankova, V. (2011) Propolis: is there a potential for the development of new drugs? J. Ethnopharmacol. 133, 253–260PubMedCrossRefGoogle Scholar
  21. Shruthi, E., Suma, B.S. (2012) Health from the hive: potential uses of propolis in general health. Int. J. Clin. Med. 3, 159–162CrossRefGoogle Scholar
  22. Simone, M., Evans, J.D., Spivak, M. (2009) Resin collection and social immunity in honey bees. Evolution 63, 3016–3022PubMedCrossRefGoogle Scholar
  23. Simone-Finstrom, M., Spivak, M. (2010) Propolis and bee health: the natural history and significance of resin use by honey bees. Apidologie 41, 295–311CrossRefGoogle Scholar
  24. Simone-Finstrom, M., Spivak, M. (2012) Increased resin collection after parasite challenge: a case of self-medication in honey bees? PLoS One 7(3), e34601PubMedCrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France 2012

Authors and Affiliations

  • Katarina Bilikova
    • 1
  • Milena Popova
    • 2
  • Boryana Trusheva
    • 2
  • Vassya Bankova
    • 2
  1. 1.Department of Molecular Apidology, Institute of Molecular BiologySlovak Academy of SciencesBratislavaSlovakia
  2. 2.Institute of Organic Chemistry with Centre of PhytochemistryBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations