, Volume 44, Issue 2, pp 188–197 | Cite as

Microsatellite analysis in museum samples reveals inbreeding before the regression of Bombus veteranus

  • Kevin Maebe
  • Ivan Meeus
  • Jafar Maharramov
  • Patrick Grootaert
  • Denis Michez
  • Pierre Rasmont
  • Guy SmaggheEmail author
Original article


The worldwide decline of pollinators is an emerging threat and is a matter both for ecological and economic concerns. Population genetics can be used to correlate bumblebee decline with genetic parameters. In order to do so, historical data are needed. We used eight microsatellite loci to genotype pinned museum specimens of the declining bumblebee Bombus veteranus. Bumblebee samples were collected spanning a period of three decades (1895–1923). We detected low genetic diversity and inbreeding in the samples collected during the respective time periods. Inbreeding was also confirmed by the occurrence of sterile diploid males. Based on the data obtained, we speculate that low genetic diversity and inbreeding did not directly result in the collapse of B. veteranus in Belgium. However, inbreeding might still play an indirect role in the decline of bumblebee populations because of the appearance of diploid males and because a low H E might reduce the capacity to react to the drivers of bumblebee decline.


microsatellites ancient DNA museum collections genetic diversity bumblebee decline 



This project was supported by the Special Research Fund of Ghent University, the Fund for Scientific Research-Flanders (FWO-Vlaanderen), and the Fonds de la Recherche Scientifique–Fonds de la Recherche Fondamentale Collective (FNRS-FRFC) (FRFC convention no. 2.4618.12).

Bombus veteranus : l’analyse de microsatellites de cette espèce à partir d’échantillons d’un museum révèle une consanguinité avant leur régression.

Microsatellites / ADN ancien / collections muséographiques / diversité génétique / déclin des bourdons

Mikrosatelliten-Analyse von Museumsproben verrät das Auftreten von Inzucht bereits vor dem Rückgang von Bombus veteranus.

Mikrosatelliten / ancient DNA / Museumssammlungen / geneRückgang von Hummeln / Rückgang von Hummeln

Supplementary material

13592_2012_170_MOESM1_ESM.pdf (128 kb)
ESM 1 (PDF 127 kb)
13592_2012_170_MOESM2_ESM.pdf (88 kb)
ESM 2 (PDF 87 kb)
13592_2012_170_MOESM3_ESM.pdf (89 kb)
ESM 3 (PDF 88 kb)
13592_2012_170_MOESM4_ESM.pdf (130 kb)
ESM 4 (PDF 129 kb)


  1. Anderson, C.N.K., Ramakrishnan, U., Chan, Y.L., Hadly, E.A. (2005) Serial SimCoal: a population genetic model for data from multiple populations and points in time. Bioinformatics 21, 1733–1734PubMedCrossRefGoogle Scholar
  2. Ashley, M.V., Berger-Wolf, T.Y., Caballero, I.C., Chaovalitwongse, W., Dasgupta, B., et al. (2008) Full siblings reconstruction in wild populations from microsatellite genetic markers. Nova, Hauppauge. Computational Biology: New ResearchGoogle Scholar
  3. Ashley, M.V., Caballero, I.C., Chaovalitwongse, W., Dasgupta, B., Govindan, P., Sheikh, S.I., Berger-Wolf, T.Y. (2009) KINALYZER, a computer program for reconstructing sibling groups. Mol. Ecol. Resour. 9, 1127–1131PubMedCrossRefGoogle Scholar
  4. Blacquière, T., Smagghe, G., Van Gestel, C.A.M., Mommaerts, V. (2012) Neonicotinoids in bees: a review on concentrations, side-effects and risk-assessment. Ecotoxicoly 21, 973–992CrossRefGoogle Scholar
  5. Callen, D.F., Thompson, A.D., Shen, Y., Phillips, H.A., Richards, R.I., Mulley, J.C., Sutherland, G.R. (1993) Incidence and origin of “null” alleles in the (AC)n microsatellite markers. Am. J. Hum. Genet 52, 922–927PubMedGoogle Scholar
  6. Cameron, S.A., Lozier, J.D., Strange, J.P., Koch, J.B., Cordes, N., Solter, L.F., Griswold, T.L. (2011) Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. USA 18, 662–667CrossRefGoogle Scholar
  7. Chapuis, M.-P., Estoup, A. (2007) Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol 24, 621–631PubMedCrossRefGoogle Scholar
  8. Chapuis, M.-P., Lecoq, M., Michalakis, Y., Loiseau, A., Sword, G.A., Piry, S., Estoup, A. (2008) Do outbreaks affect genetic population structure? A worldwide survey in Locusta migratoria, a pest plagued by microsatellite null alleles. Mol. Ecol 17, 3640–3653PubMedCrossRefGoogle Scholar
  9. Chybicki, I.J., Burczyk, J. (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J. Hered 100, 106–113PubMedCrossRefGoogle Scholar
  10. Connop, S., Hill, T., Steer, J., Shaw, P. (2010) The role of dietary breadth in national bumblebee (Bombus) declines: simple correlation? Biol. Conserv 143, 2739–2746CrossRefGoogle Scholar
  11. Cook, J.M., Crozier, R.H. (1995) Sex determination and population biology in the Hymenoptera. Trends Ecol. Evol 10, 281–286PubMedCrossRefGoogle Scholar
  12. Crawford, N.G. (2010) SMOGD: software for the measurement of genetic diversity. Mol. Ecol. Resour 10, 556–557PubMedCrossRefGoogle Scholar
  13. Duchateau, M.J., Hishiba, H., Velthuis, H.H.W. (1994) Diploid males in the bumble bee Bombus terrestris. Entomol. Exp. Appl 71, 263–269CrossRefGoogle Scholar
  14. El Mousadik, A., Petit, R.J. (1996) Chloroplast DNA phylogeography of the argan tree of Morocco. Mol. Ecol 5, 547–555PubMedCrossRefGoogle Scholar
  15. Estoup, A., Solignac, M., Harry, M., Cornuet, J.-M. (1993) Characterization of (GT)n and (CT)n microsatellites in two insect species Apis mellifera and Bombus terrestris. Nucleic. Acid. Res 21, 1427–1431PubMedCrossRefGoogle Scholar
  16. Excoffier, L., Novembre, J., Schneider, S. (2000) SimCoal: a general coalescent program for simulation of molecular data in interconnected populations with arbitrary demography. J. Hered 91, 506–509PubMedCrossRefGoogle Scholar
  17. Frankham, R. (2005) Genetics and extinction. Biol. Conserv 126, 131–140CrossRefGoogle Scholar
  18. Garza, J.C., Williamson, E. (2001) Detection of reduction in population size using data from microsatellite DNA. Mol. Ecol 10, 305–318PubMedCrossRefGoogle Scholar
  19. Gerloff, C.U., Schmid-Hempel, P. (2005) Inbreeding depression and family variation in a social insect, Bombus terrestris (Hymenoptera: Apidae). Oikos 111, 67–80CrossRefGoogle Scholar
  20. Goudet, J. (2001) Fstat: a program to estimate and test gene diversities and fixation indices (version 2.9.3). Updated from Goudet, J. (1995): Fstat (version 1.2): a computer program to calculate F-statistics. J. Hered 86, 485–486Google Scholar
  21. Goulson, D., Osborne, J.L. (2010) Foraging economics. Bumblebees: behaviour, ecology and conservation (ed. by D. Goulson), p. 96. Oxford University Press, Oxford, UKGoogle Scholar
  22. Goulson, D., Lye, G.C., Darvill, B. (2008) Decline and conservation of bumble bees. Annu. Rev. Entomol 53, 191–208PubMedCrossRefGoogle Scholar
  23. Guinand, B., Scribner, K.T. (2003) Evaluation of methodology for detection of genetic bottlenecks: inferences from temporally replicated lake trout populations. C. R. Biol 326(Supplement 1), 61–67CrossRefGoogle Scholar
  24. Hines, H.M., Hendrix, S.D. (2005) Bumble bee (Hymenoptera: Apidae) diversity and abundance in tallgrass prairie patches: effects of local and landscape floral resources. Environ. Entomol. 34, 1477–1484CrossRefGoogle Scholar
  25. Jost, L. (2008) G(ST) and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026PubMedCrossRefGoogle Scholar
  26. Keller, L.F., Waller, D.M. (2002) Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230–241CrossRefGoogle Scholar
  27. Klein, A.-M., Vaissière, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., et al. (2007) Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B. 274, 303–313PubMedCrossRefGoogle Scholar
  28. Kremen, C., Williams, N.M., Aizen, M.A., Gemmill-Herren, B., Le Buhn, G., et al. (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol. Lett 10, 299–314PubMedCrossRefGoogle Scholar
  29. Lozier, J.D., Cameron, S.A. (2009) Comparative genetic analyses of historical and contemporary collections highlight contrasting demographic histories for the bumblebees Bombus pensylvanicus and B. impatiens in Illinois. Mol. Ecol 18, 1875–1886PubMedCrossRefGoogle Scholar
  30. Meeus, I., Brown, M.J.F., de Graaf, D.C., Smagghe, G. (2011) Effects of invasive parasites on bumble bee declines. Conserv. Biol 25, 662–671PubMedCrossRefGoogle Scholar
  31. Nei, M. (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590PubMedGoogle Scholar
  32. Packer, L., Owen, R. (2001) Population genetic aspects of pollinator decline. Conserv. Ecol 5, 4Google Scholar
  33. Pauly, A., Rasmont, P. (2010) Les bourdons de la Belgique. Website Atlas Hymenoptera, Gembloux Agro-Biotech, Université de Mons, Gembloux, Mons. Accessed 10 January, 2012.
  34. Peakall, R., Smouse, F. (2006) GENALEX 6: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research. Australian National University, Canberra, AustraliaGoogle Scholar
  35. Rasmont, P., Iserbyt, I. (2010) Atlas of the European Bees: genus Bombus. STEP Project, Atlas Hymenoptera, Mons, Gembloux. Accessed 25 December, 2011.
  36. Rasmont, P., Mersch, P. (1988) Premiere estimation de la dérive faunique chez les bourdons de la Belgique (Hymenoptera, Apidae). Ann. Soc. Royal Zool. Bel 118, 141–147Google Scholar
  37. Rasmont, P., Leclercq, J., Jacob-Remacle, A., Pauly, A., Gaspar, C. (1993) The faunistic drift of Apoidea in Belgium. pp. 65-87, in Bruneau, E., Bees for pollination, Commission of the European Communities, Brussels, 237 pp.Google Scholar
  38. Rasmont, P., Pauly, A., Terzo, M., Patiny, S., Michez, D., Iserbyt, S., Barbier, Y., Haubruge, E. (2005) The survey of wild bees (Hymenoptera, Apoidea) in Belgium and France. FAO, Roma, 18 pp.Google Scholar
  39. Reber Funk, C., Schmidt-Hempel, R., Schmid-Hempel, P. (2006) Microsatellite loci for Bombus spp. Mol. Ecol. Notes 6, 83–86CrossRefGoogle Scholar
  40. Schmid-Hempel, P., Schmid-Hempel, R., Brunner, P.C., Seeman, O.D., Allen, G.R. (2007) Invasion success of the bumblebee, Bombus terrestris, despite a drastic genetic bottleneck. Heredity 99, 414–422PubMedCrossRefGoogle Scholar
  41. Söderman, G. (1999) Diversity of pollinator communities in Eastern Fennoskandia and Eastern Baltics. Results from pilot monitoring with yellow traps in 1997–1998. The Finnish Environment 355, Finnish Environment Institute, Helsinki.Google Scholar
  42. Sorati, M., Newman, M., Hovman, A.A. (1996) Inbreeding and incompatibility in Trichogramma brassicae: evidence and implications for quality control. Entomol. Exp. Appl 78, 283–290CrossRefGoogle Scholar
  43. Strange, J.P., Knoblett, J., Griswold, T. (2009) DNA amplification from pin-mounted bumble bees (Bombus) in a museum collection: effects of fragment size and specimen age on successful PCR. Apidologie 40, 134–139CrossRefGoogle Scholar
  44. Stroot, P., Depiereux (1989) Proposition d'une méthodologie pour établir des listes rouges d'invertébrés menacé. Biol. Conserv 48, 163–179Google Scholar
  45. Thompson, H.M. (2001) Assessing the exposure and toxicity of pesticides to bumblebees (Bombus sp.). Apidologie 32, 305–321CrossRefGoogle Scholar
  46. Van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M., Shipley, P. (2004) MICROCHECKER: software for identifying and correcting genotyping errors. Mol. Ecol. Notes 4, 535–538CrossRefGoogle Scholar
  47. Voveikov, G.S. (1953) Estestvennaya smena samok vo cem’ya shchmelej (Hym. Bomb.). Russkoe entomol obozrenie 33, 174–184Google Scholar
  48. Wandeler, P., Hoeck, P.E.A., Keller, L.F. (2007) Back to the future: museum specimens in population genetics. Trends Ecol. Evol 22, 634–642PubMedCrossRefGoogle Scholar
  49. Wang, J.L. (2004) Sibship reconstruction from genetic data with typing errors. Genetics 166, 1963–1979PubMedCrossRefGoogle Scholar
  50. Whitehorn, P.R., Tinsley, M.C., Brown, M.J.F., Darvill, B., Goulson, D. (2009) Impacts of inbreeding on bumblebee colony fitness under field conditions. BMC Evol. Biol 9, 152PubMedCrossRefGoogle Scholar
  51. Williams, P.H. (1982) The distribution and decline of British bumble bees (Bombus Latr.). J. Apic. Res 21, 236–245Google Scholar
  52. Zayed, A. (2009) Bee genetics and conservation. Apidologie 40, 237–262CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France 2012

Authors and Affiliations

  • Kevin Maebe
    • 1
  • Ivan Meeus
    • 1
  • Jafar Maharramov
    • 1
  • Patrick Grootaert
    • 2
  • Denis Michez
    • 3
  • Pierre Rasmont
    • 3
  • Guy Smagghe
    • 1
    Email author
  1. 1.Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
  2. 2.Royal Belgian Institute of Natural Sciences, Department EntomologyBrusselsBelgium
  3. 3.Laboratoire de ZoologyUniversité de Mons-HainautMonsBelgium

Personalised recommendations