Apidologie

, Volume 44, Issue 1, pp 21–28 | Cite as

Lack of lethal and sublethal effects of Cry1Ac Bt-toxin on larvae of the stingless bee Trigona spinipes

  • Maria Augusta P. Lima
  • Carmen Silvia S. Pires
  • Raul Narciso C. Guedes
  • Lucio Antonio O. Campos
Original article

Abstract

Stingless bees, particularly Trigona spinipes, are important pollinators in tropical ecosystems and are potentially affected by environmental contaminants. In this study, we tested the possible negative effects on T. spinipes larvae of the ingestion of a diet contaminated with Cry1Ac Bt-toxin. This toxin is expressed in genetically modified cotton plants. A method of rearing stingless bee larvae is described in this paper. The larvae were provided with either pure larval diet, diluted larval diet, or larval diet diluted in a Cry1Ac solution compatible with the lethal pest-exposure level (50 μg/mL). Cry1Ac ingestion did not impair the development of worker larvae, but the diluted diet slightly increased larval mortality. These results indicate that harmful effects on stingless bee larvae due to the ingestion of pollen-expressed Cry1Ac toxin are unlikely under field conditions.

Keywords

Bacillus thuringiensis toxin transgenic plants environmental impact native pollinator risk assessment 

References

  1. Allison, P.D. (1998) Survival analysis using the SAS System—a practical guide. SAS Institute, CaryGoogle Scholar
  2. Almeida, M.C., Laroca, S. (1988) Trigona spinipes (Apidae, Meliponinae): taxonomia, bionomia e relações tróficas em áreas restritas. Acta Biol. Par. 17, 67–108Google Scholar
  3. Arpaia, S., Imperatriz-Fonseca, V.L., Pires, C.S.S., Silveira, F.S. (2006) Non-target and biodiversity impacts on pollinators and flower visiting insects. In: Hilbeck, A., Andow, D., Fontes, E. (eds.) Environmental risk assessment of genetically modified organisms: methodologies for assessing Bt cotton in Brazil, pp. 155–174. CABI, CambridgeCrossRefGoogle Scholar
  4. Babendreier, D., Kalberer, N., Romeis, J., Fluri, P., Bigler, F. (2004) Pollen consumption in honey bee larvae: a step forward in the risk assessment of transgenic plants. Apidologie 35, 293–300CrossRefGoogle Scholar
  5. Babendreier, D., Reichhart, B., Romeis, J., Bigler, F. (2008) Impact of insecticidal proteins expressed in transgenic plants on bumblebee microcolonies. Entomol. Exp. Appl. 126, 148–157CrossRefGoogle Scholar
  6. Bosch, J., Vicens, N. (2002) Body size as an estimator of production costs in a solitary bee. Ecol. Entomol. 27, 129–137CrossRefGoogle Scholar
  7. Buschini, M.L.T., Campos, L.A.O. (1995) Caste determination in Trigona spinipes (Hymenoptera, Apidae): influence of the available food and the juvenile hormone. Rev. Bras. Biol. 55, 121–129Google Scholar
  8. Cerda, H., Sayyed, A.H., Wright, D.H. (2003) Laboratory culture conditions affect stability of resistance to Bacillus thunrigiensis Cry1Ac in Plutella xylostella (Lep., Plutellidae). J. Appl. Entomol. 127, 142–145CrossRefGoogle Scholar
  9. Dick, C.W. (2001) Habitat change, African honeybees and fecundity in the Amazonian tree Dinizia excelsa (Fabaceae). In: Bierregaard, R.O., Gascon, C., Lovejoy, T.E., Mesquita, R. (eds.) Lessons from Amazonia: the ecology and conservation of a fragmented forest, pp. 146–157. Yale University Press, New HavenGoogle Scholar
  10. Dong, H.Z., Li, W.J. (2007) Variability of endotoxin expression in Bt transgenic cotton. J. Agron. Crop. Sci. 193, 21–29CrossRefGoogle Scholar
  11. Duan, J.J., Marvier, M., Huesing, J., Dively, G., Huang, Z.Y. (2008) A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae). PLoS One 3, e1415. doi:10.1371/journal.pone.0001415 PubMedCrossRefGoogle Scholar
  12. Greenplate, J.T. (1997) Response to reports of early damage in 1996 commercial Bt-transgenic cotton (Bollgard®) plantings. Soc. Invertebr. Pathol. Newsl. 29, 15–18Google Scholar
  13. Han, P., Chang-Ying, N., Chao-Liang, L., Jin-Jie, C., Desneux, N. (2010) Quantification of toxins in a Cry1Ac+CpTI cotton cultivar and its potential effects on the honey bee Apis mellifera L. Ecotoxicology 19, 1452–1459PubMedCrossRefGoogle Scholar
  14. Hanley, A.V., Huang, Z.Y., Pett, W.L. (2003) Effects of dietary transgenic Bt corn pollen on larvae of Apis mellifera and Galleria mellonela. J. Apic. Res. 42, 77–81Google Scholar
  15. James, C. (2011) Global Status of Commercialized Biotech/GM Crops: 2011. ISAAA Brief No. 43. ISAAA, IthacaGoogle Scholar
  16. Klein, A.M., Vaissiere, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., Tscharntke, T. (2007) Importance of pollinators in changing landscapes for world crops. Proc. Soc. Lond. B. Biol. 274, 303–313. doi:10.1098/rspb.2006.3721 CrossRefGoogle Scholar
  17. Klostermeyer, E.C., Mech, S.J., Rasmussen, W.B. (1973) Sex and weight of Megachile rotundata (Hymenoptera: Megachilidae) progeny associated with provision weights. J. Kansas Entomol. Soc. 46, 536–548Google Scholar
  18. Konrad, R., Ferry, N., Gatehouse, A.M.R., Babendreier, D. (2008) Potential Effects of oilseed rape expressing oryzacystatin-1 (OC-1) and of purified insecticidal proteins on larvae of the solitary bee Osmia bicornis. PLoS One 3, e2664. doi:10.1371/journal.pone.0002664 PubMedCrossRefGoogle Scholar
  19. Konrad, R., Connor, M., Ferry, N., Gatehouse, A.M.R., Babendreier, D. (2009) Impact of transgenic oilseed rape expressing oryzacystatin-1 (OC-1) and of insecticidal proteins on longevity and digestive enzymes of the solitary bee Osmia bicornis. J. Insect Physiol. 55, 305–313PubMedCrossRefGoogle Scholar
  20. Lehrman, A. (2007) Does pea lectin expressed transgenically in oilseed rape (Brassica napus) influence honeybee (Apis mellifera) larvae? Environ. Biosaf. Res. 6, 1–8CrossRefGoogle Scholar
  21. Lichtenberg, E.M., Hrncir, M., Turatti, I.C., Nieh, J.C. (2011) Olfactory eavesdropping between two competing stingless bee species. Behav. Ecol. Sociobiol. 65, 763–774PubMedCrossRefGoogle Scholar
  22. Lima, M.A.P., Pires, C.S.S., Guedes, R.N.C., Nakasu, E.Y.T., Lara, M.S., Fontes, E.M.G., Sujii, E.R., Dias, S.C., Campos, L.A.O. (2011) Does Cry1Ac BT-toxin impair development of worker larvae of Africanized honey bee? J. Appl. Entomol. 135, 415–422CrossRefGoogle Scholar
  23. Malone, L.A., Tregidga, E.L., Todd, J.H., Burgess, E.P.J., Philip, B.A., Markwick, N.P., Poulton, J., Christeller, J.T., Lester, M.T., Gatehouse, H.S. (2002) Effects of ingestion of a biotin-binding protein on adult and larval honey bees. Apidologie 33, 447–458CrossRefGoogle Scholar
  24. Malone, L.A., Todd, J.H., Burgess, E.P.J., Christeller, J.T. (2004) Development of hypopharyngeal glands in adult honey bees fed with a Bt toxin, a biotin-binding protein and a protease inhibitor. Apidologie 35, 655–664CrossRefGoogle Scholar
  25. Morandin, L.A., Winston, M. (2003) Effects of novel pesticides on bumble bee (Hymenoptera: Apidae) colony health and foraging ability. Environ. Entomol. 32, 555–563CrossRefGoogle Scholar
  26. Motulsky, H.J. (2007) Prism 5 Guide. GraphPad Software, San DiegoGoogle Scholar
  27. Nieh, J.C., Barreto, L.S., Contrera, F.A.L., Imperatriz-Fonseca, V.L. (2004a) Olfactory eavesdropping by a competitively foraging stinglees bee, Trigona spinipes. Proc. R. Soc. Lond. B. 271, 1633–1640CrossRefGoogle Scholar
  28. Nieh, J.C., Contrera, F.A.L., Yoon, R.R., Barreto, L.S., Imperatriz-Fonseca, V.L. (2004b) Polarized short odor-trail recruitment communication by a stingless bee, Trigona spinipes. Behav. Ecol. Sociobiol. 56, 435–448CrossRefGoogle Scholar
  29. Nieh, J.C., Kruizinga, K., Barreto, L.S., Contrera, F.A.L., Imperatriz-Fonseca, V.L. (2005) Effect of group size on the agression strategy of an extirpating stingless bee, Trigona spinipes. Insectes Soc. 52, 147–154CrossRefGoogle Scholar
  30. Pyke, G.H. (1978) Optimal body size in bumblebees. Oecologia 34, 255–266CrossRefGoogle Scholar
  31. Quezada-Euán, J.J.G., Lopez-Velasco, A., Perez-Balam, J., Moo-Valle, H., Velazquez-Madrazo, A., Paxton, R.J. (2011) Body size differs in workers produced across time and is associated with variation in the quantity and composition of larval food in Nannotrigona perilampoides (Hymenoptera, Meliponini). Insectes Soc. 58, 31–38CrossRefGoogle Scholar
  32. Ramirez-Romero, R., Desneux, N., Decourtye, A., Chaffiol, A., Pham-Delegue, M.H. (2008) Does Cry1Ab protein affect learning performances of the honey bee Apis mellifera L. (Hymenoptera, Apidae)? Ecotoxicol. Environ. Saf. 70, 327–333PubMedCrossRefGoogle Scholar
  33. Sakagami, S.F. (1981) Stingless Bees. In: Hermann, H.R. (ed.) Social insects, vol. 3. Academic, New YorkGoogle Scholar
  34. SAS Institute (2008) SAS/STAT user’s guide. SAS Institute, Cary, NC, USAGoogle Scholar
  35. Slaa, E.J., Chaves, L.A.S., Malagodi-Braga, K.S., Hofstede, F.E. (2006) Stingless bees in applied pollination: practice and perspectives. Apidologie 37, 293–315CrossRefGoogle Scholar
  36. Velthuis, H.H.W., Cortopassi-Laurino, M., Pereboom, Z., Imperatriz-Fonseca, V. (2003) Speciation, development, and the conservative egg of the stingless bee genus Melipona. Proc. Sect. Exp. Appl. Entomol. 14, 53–57 Google Scholar
  37. Wcislo, W.T., Cane, J.H. (1996) Floral resource utilization by solitary bees (Hymenoptera: Apoidea) and exploitation of their stored foods by natural enemies. Annu. Rev. Entomol. 41, 257–286Google Scholar
  38. Wilkinson, M.J. (2004) Abandoning ‘responsive’ GM risk assessment. Trends Biotechnol. 22, 438–439PubMedCrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag, France 2012

Authors and Affiliations

  • Maria Augusta P. Lima
    • 1
  • Carmen Silvia S. Pires
    • 2
  • Raul Narciso C. Guedes
    • 3
  • Lucio Antonio O. Campos
    • 4
  1. 1.Departamento de Biologia AnimalUniversidade Federal de ViçosaViçosaBrazil
  2. 2.EMBRAPA Recursos Genéticos e BiotecnologiaBrasíliaBrazil
  3. 3.Departamento de EntomologiaUniversidade Federal de ViçosaViçosaBrazil
  4. 4.Departamento de Biologia GeralUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations