, Volume 43, Issue 6, pp 698–714 | Cite as

Is flower selection influenced by chemical imprinting to larval food provisions in the generalist bee Osmia bicornis (Megachilidae)?

  • Heidi E. M. DobsonEmail author
  • Manfred Ayasse
  • Katherine A. O’Neal
  • Jesse A. Jacka
Original article


To investigate whether flower selection in polylectic solitary bees is modulated by chemical imprinting to nest provisions, larvae of Osmia bicornis (L.) were reared on either Brassica napus L. (Brassicaceae) or Onobrychis viciifolia Scop. (Fabaceae). Flower preferences by adults were evaluated in multiple-choice behavioral tests based on visit number and duration, and flowers selected in the first three visits; data were compared to control bees from the wild. Females reared on B. napus showed only subtle increases in selection for this species, which was highly attractive to both control and experimental bees, masking any effects of imprinting; however, in the first three visits, experimental bees tended to select B. napus more frequently and consistently than controls. Bees reared on O. viciifolia were few and mostly males, which tended to visit this species more than controls. Rearing larvae on either plant affected bee attraction to other plant species. Overall, the data do not provide clear evidence of imprinting, but suggest that rearing bees on a single plant can both directly and indirectly affect flower selection by adults.


solitary bees polylecty flower selection imprinting larval food 



We deeply thank staff and faculty at the University of Vienna for all their support and assistance, particularly the Department of Evolutionary Biology, Prof. Dr. H.F. Paulus and Eva Zellinger, Dr. H. Pechhacker of the Institut für Bienenkunde for setting up bee tents over specially planted fields, the Botanical Garden for permission to rear bees and collect flowers, and the Zoological Institute for greenhouse space to conduct tests. We are grateful to two anonymous reviewers who provided very helpful and thoughtful comments to improve our manuscript. Many thanks are given to the following for funding various parts of this project: M.J. Murdock Charitable Trust College Science Research Program through Whitman College (KAO and HEMD), Whitman Science Summer Research (JAJ and HEMD), Whitman College ASID funds (HEMD), and Fellowship for Foreign Research from the University of Vienna (HEMD).


  1. Abel, C.A., Wilson, R.L. (1998) The use of diverse plant species for increasing Osmia cornifrons (Hymenoptera: Megachilidae) in field cages. J. Kansas Entomol. Soc. 71, 23–28Google Scholar
  2. Barron, A.B. (2001) The life and death of Hopkins’ host-selection principle. J. Insect Behav. 14, 725–737CrossRefGoogle Scholar
  3. Blackiston, D.J., Casey, E.S., Weiss, M.R. (2008) Retention of memory through metamorphosis: can a moth remember what it learned as a caterpillar? Plos ONE 3, e1736. doi: 10.1371/journal.pone.0001736 PubMedCrossRefGoogle Scholar
  4. Bosch, J., Kemp, W.P. (2002) Developing and establishing bee species as crop pollinators: the example of Osmia spp. (Hymenoptera: Megachilidae) and fruit trees. Bull. Entomol. Res. 92, 3–16PubMedGoogle Scholar
  5. Burger, H., Dötterl, S., Ayasse, M. (2010) Host-plant finding and recognition by visual and olfactory cues in an oligolectic bee. Funct. Ecol. 24, 1234–1240CrossRefGoogle Scholar
  6. Burger, H., Dötterl, S., Häberlein, C., Schulz, S., Ayasse, M. (2012) An arthropod deterrent attracts specialised bees to their host plants. Oecologia 168, 727–736. doi: 10.1007/s00442-011-2136-4 Google Scholar
  7. Cane, J., Sipes, S. (2006) Characterizing floral specialization by bees: analytical methods and a revised lexicon for oligolecty. In: Waser, N.M., Ollerton, J. (eds.) Plant–pollinator interactions: from specialization to generalization, pp. 99–120. University of Chicago Press, ChicagoGoogle Scholar
  8. Clement, S.L., Griswold, T.L., Rust, R.W., Heller, B.C., Stout, D.M. (2006) Bee associates of flowering Astragalus and Onobrychis genebank accessions at a Snake River site in eastern Washington. J. Kansas Entomol. Soc. 79, 254–260CrossRefGoogle Scholar
  9. Corbet, S.A. (1985) Insect chemosensory responses: a chemical legacy hypothesis. Ecol. Entomol. 10, 143–153CrossRefGoogle Scholar
  10. Craighead, F.C. (1921) Hopkins host-selection principle as related to certain cerambycid beetles. J. Agric. Res. 22, 189–220Google Scholar
  11. Delaplane, K.S., Mayer, D.F. (2000) Crop pollination by bees. CABI Publishing, OxonCrossRefGoogle Scholar
  12. Dethier, V.G. (1954) Evolution of feeding preferences in phytophagous insects. Evolution 8, 33–54CrossRefGoogle Scholar
  13. Dobson, H.E.M. (1987) Role of flower and pollen aromas in host-plant recognition by solitary bees. Oecologia 72, 618–623CrossRefGoogle Scholar
  14. Dobson, H.E.M., Bergström, G. (2000) The ecology and evolution of pollen odors. Plant Syst. Evol. 222, 63–87CrossRefGoogle Scholar
  15. Dobson, H.E.M., Peng, Y.-S. (1997) Digestion of pollen components by larvae of the flower-specialist bee Chelostoma florisomne (Hymenoptera: Megachilidae). J. Insect Physiol. 43, 89–100PubMedCrossRefGoogle Scholar
  16. Dötterl, S., Füssel, U., Jürgens, A., Aas, G. (2005) 1,4-Dimethoxybenzene, a floral scent compound in willows that attracts an oligolectic bee. J. Chem. Ecol. 31, 2993–2998PubMedCrossRefGoogle Scholar
  17. Dötterl, S., Schäffler, I. (2007) Flower scent of floral oil-producing Lysimachia punctata as attractant for the oil-bee Macropis fulvipes. J. Chem. Ecol. 33, 441–445PubMedCrossRefGoogle Scholar
  18. Dötterl, S., Milchreit, K., Schäffler, I. (2011) Behavioral plasticity and sex differences in host finding of a specialized bee species. J. Comp. Physiol. A 197, 1119–1126CrossRefGoogle Scholar
  19. Eickwort, G.C., Ginsberg, H.S. (1980) Foraging and mating behavior in Apoidea. Ann. Rev. Entomol. 25, 421–446CrossRefGoogle Scholar
  20. Fliszkiewicz, M., Giejdasz, K., Wilkaniec, Z. (2011) The importance of male red mason bee (Osmia rufa L.) and male bufftailed bumblebee (Bombus terrestris L.) pollination in blackcurrant (Ribes nigrum L.). J. Hortic. Sci. Biotech. 86, 457–460Google Scholar
  21. Gutiérrez-Ibáñez, C., Villagra, C.A., Niemeyer, H.M. (2007) Pre-pupation behaviour of the aphid parasitoid Aphidius ervi (Haliday) and its consequences for pre-imaginal learning. Naturwissenschaften 94, 595–600PubMedCrossRefGoogle Scholar
  22. Hanley, M.E., Franco, M., Pichon, S., Darvill, B., Goulson, D. (2008) Breeding system, pollinator choice and variation in pollen quality in British herbaceous plants. Funct. Ecol. 22, 592–598CrossRefGoogle Scholar
  23. Holm, S.N. (1973) Osmia rufa L. (Hym. Megachilidae) as a pollinator of plants in greenhouses. Ent. Scand. 4, 217–224Google Scholar
  24. Ivanov, S.P. (2006) The nesting of Osmia rufa (L.) (Hymenoptera, Megachilidae) in the Crimea: structure and composition of nests. Entomol. Rev. 86, 524–533CrossRefGoogle Scholar
  25. Jaenike, J. (1983) Induction of host preference in Drosophila melanogaster. Oecologia 58, 320–325CrossRefGoogle Scholar
  26. James, R.R., Pitts-Singer, T.L. (eds.) (2008) Bee pollination in agricultural ecosystems. Oxford University Press, New YorkGoogle Scholar
  27. Krunić, M.D., Stanisavljević, L.Z. (2006) Population management in the mason bee species Osmia cornuta and O. rufa for orchard pollination in Serbia (Hymenoptera: Megachilidae). Entomol. Gener. 29, 27–38Google Scholar
  28. Linsley, E.G. (1958) The ecology of solitary bees. Hilgardia 27, 543–599Google Scholar
  29. Linsley, E.G. (1978) Temporal patterns of flower visitation by solitary bees, with particular reference to the southwestern United States. J. Kansas Entomol. Soc. 51, 531–546Google Scholar
  30. Maciel de A. Correia, M.L. (1994) Préférences polliniques des principaux insects pollinisateurs de Légumineuses fourragères. Grana 33, 218–224Google Scholar
  31. Maddocks, R., Paulus, H.F. (1987) Quantitative Aspekte der Brutbiologie von Osmia rufa F. und Osmia cornuta Latr. (Hymenoptera, Megachilidae): eine Vergleichende Untersuchung zu Mechanismen der Konkurrenzminderung zweier nahverwandter Bienenarten. Zool. Jb. Syst. 114, 15–44Google Scholar
  32. Michener, C.D. (2007) The bees of the world, 2nd edn. John Hopkins University Press, BaltimoreGoogle Scholar
  33. Milet-Pinheiro P., Ayasse M., Schlindwein C., Dobson H.E.M., Dötterl S. 2012. Host location by visual and olfactory floral cues in an oligolectic bee: innate and learned behavior. Behav. Ecol. 23, 531–538Google Scholar
  34. Müller, A., Kuhlmann, M. (2008) Pollen hosts of western palaearctic bees of the genus Colletes (Hymenoptera: Colletidae): the Asteraceae paradox. Biol. J. Linn. Soc. 95, 719–733CrossRefGoogle Scholar
  35. Nicolson, S.W., Thornburg, R.W. (2007) In: Nicolson, S.W., Nepi, M., Pacini, E. (eds.) Nectaries and nectar, pp. 215–264. Springer, DordrechtCrossRefGoogle Scholar
  36. O’Toole, C. (2000) The red mason bee: taking the sting out of bee-keeping. Osmia Publications, BanburyGoogle Scholar
  37. Pitts-Singer, T.L., Bosch, J. (2010) Nest establishment, pollination efficiency, and reproductive success of Megachile rotundata (Hymenoptera: Megachilidae) in relation to resource availability in field enclosures. Environ. Entomol. 39, 149–158PubMedCrossRefGoogle Scholar
  38. Praz, C.J., Müller, A., Dorn, S. (2008a) Host recognition in a pollen-specialist bee: evidence for a genetic basis. Apidologie 39, 547–557CrossRefGoogle Scholar
  39. Praz, C.J., Müller, A., Dorn, S. (2008b) Specialized bees fail to develop on non-host pollen: do plants chemically protect their pollen? Ecology 89, 795–804PubMedCrossRefGoogle Scholar
  40. Radmacher, S., Strohm, E. (2010) Factors affecting offspring body size in the solitary bee Osmia bicornis (Hymenoptera, Megachilidae). Apidologie 41, 169–177CrossRefGoogle Scholar
  41. Richards, K.W. (1993) Non-Apis bees as crop pollinators. Rev Suisse Zool. 100, 807–822Google Scholar
  42. Richards, K.W., Edwards, P.D. (1988) Density, diversity, and efficiency of pollinators of Sainfoin, Onobrychis viciaefolia Scop. Can. Ent. 120, 1085–1100CrossRefGoogle Scholar
  43. Roth, E. (1990) Erfahrungen mit der Haltung und dem Einsatzder Roten Mauerbiene (Osmia rufa) in Kohlbefruchtungsgruppen. Wiss. Z. Univ. Halle 5, 11–14Google Scholar
  44. Roulston, T.H., Cane, J.H. (2000) Pollen nutritional content and digestibility for animals. Pl. Syst. Evol. 222, 187–209CrossRefGoogle Scholar
  45. Rozen, J.G., Ozbek, H., Ascher, J.S., Sedivy, C., Praz, C., Monfared, A., Müller, A. (2010) Nests, petal usage, floral preferences, and immatures of Osmia (Ozbekosmia) avosetta (Megachilidae: Megachilinae: Osmiini), including biological comparisons with other Osmiine bees. Amer. Mus. Nov. 3680, 1–22CrossRefGoogle Scholar
  46. Schäffler, I., Dötterl, S. (2011) A day in the life of an oil bee: phenology, nesting, and foraging behavior. Apidologie 42, 409–424CrossRefGoogle Scholar
  47. Sedivy, C., Praz, C.J., Müller, A., Widmer, A., Dorn, S. (2008) Patterns of host-plant choice in bees of the genus Chelostoma: the constraint hypothesis of host-range evolution in bees. Evolution 62, 2487–2507PubMedCrossRefGoogle Scholar
  48. Sedivy, C., Müller, A., Dorn, S. (2011) Closely related pollen generalist bees differ in their ability to develop on the same pollen diet: evidence for physiological adaptations to digest pollen. Funct. Ecol. 25, 718–725CrossRefGoogle Scholar
  49. Seidelmann, K. (1991) Ausgewählte Aspekte der Populationsökologie der Roten Mauerbiene, Osmia rufa (L.) untersucht in Stammzuchten. Diplomarbeit, Institut für Zoologie, Martin-Luther Universität Halle-Wittenberg, HalleGoogle Scholar
  50. Seidelmann, K. (1999) The race for females: the mating system of the red mason bee, Osmia rufa (L.) (Hymenoptera: Megachilidae). J Insect Behav 12, 13–25CrossRefGoogle Scholar
  51. Small, E., Brookes, B., Lefkovitch, L.P., Fairey, D.T. (1997) A preliminary analysis of the floral preferences of the alfalfa leafcutting bee, Megachile rotundata. Can. Field Nat. 111, 445–453Google Scholar
  52. Sommeijer, M.J., Rooijakkers, E.F., Jacobusse, C., Kerkvliet, J.D. (2009) Larval food composition and food plants of the solitary bee Colletes halophilus (Hymenoptera: Colletidae). J. Apic. Res. 48, 149–155CrossRefGoogle Scholar
  53. Soroka, J.J., Goerzen, D.W., Falk, K.C., Bett, K.E. (2001) Alfalfa leafcutting bee (Hymenoptera: Megachilidae) pollination of oilseed rape (Brassica napus L.) under isolation tents for hybrid seed production. Can. J. Plant Sci 81, 199–204CrossRefGoogle Scholar
  54. Steffan-Dewenter, I. (2003) Seed set of male-sterile and male-fertile oilseed rape (Brassica napus) in relation to pollinator density. Apidologie 34, 227–235CrossRefGoogle Scholar
  55. Stephen, W.P., Torchio, P.F. (1961) Biological notes on the leaf-cutter bee, Megachile (Eutricharaea) rotundata (Fabricius). Pan-Pac. Entomol. 37, 85–93Google Scholar
  56. Teper, D., Biliński, M. (2009) Red mason bee (Osmia rufa L.) as a pollinator of rape plantations. J. Apic. Sci. 53, 115–119Google Scholar
  57. Thorpe, W.H. (1939) Further studies on pre-imaginal olfactory conditioning in insects. Proc. R. Soc. London Ser. B. 127, 424–433CrossRefGoogle Scholar
  58. Torchio, P.F. (1990) Diversification of pollination strategies for U.S. crops. Environ. Entomol. 19, 1649–1656Google Scholar
  59. Turlings, T.C.J., Wäckers, F.L., Vet, L.E.M., Lewis, W.J., Tumlinson, J.H. (1993) Learning of host-finding cues by hymenopterous parasitoids. In: Papaj, D.R., Lewis, A.C. (eds.) Insect learning: ecological and evolutionary perspectives, pp. 51–78. Chapman and Hall, New YorkGoogle Scholar
  60. Ulbrich, K., Seidelmann, K. (2001) Modeling population dynamics of solitary bees in relation to habitat quality. Web Ecol. 2, 57–64Google Scholar
  61. Ungricht, S., Müller, A., Dorn, S. (2008) A taxonomic catalogue of the Palaearctic bees of the tribe Osmiini (Hymenoptera: Apoidea: Megachilidae). Zootaxa 1865, 1–253Google Scholar
  62. Van Emden, H.F., Sponagl, B., Wagner, E., Baker, T., Ganguly, S., Douloupaka, S. (1996) Hopkins’ ‘host selection principle’, another nail in its coffin. Physiol. Entomol. 21, 325–328CrossRefGoogle Scholar
  63. Visser, J.H. (1986) Host odor perception in phytophagous insects. Ann. Rev. Entomol. 31, 121–144CrossRefGoogle Scholar
  64. Wcislo, W.T., Cane, J.H. (1996) Floral resource utilization by solitary bees and exploitation of their stored foods by natural enemies. Annu. Rev. Entomol. 41, 257–286PubMedCrossRefGoogle Scholar
  65. Westcott, L., Nelson, D. (2001) Canola pollination: an update. Bee World 82, 115–129Google Scholar
  66. Westrich, P. (1989) Die Wildbienen Baden-Württembergs. Teil I & II Eugene Ulmer, StuttgartGoogle Scholar
  67. Williams, N.M. (2003) Use of novel pollen species by specialist and generalist solitary bees (Hymenoptera: Megachilidae). Oecologia 134, 228–237PubMedGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag, France 2012

Authors and Affiliations

  • Heidi E. M. Dobson
    • 1
    Email author
  • Manfred Ayasse
    • 2
  • Katherine A. O’Neal
    • 1
    • 3
  • Jesse A. Jacka
    • 1
    • 4
  1. 1.Department of BiologyWhitman CollegeWalla WallaUSA
  2. 2.Institute of Experimental EcologyUniversity of UlmUlmGermany
  3. 3.Las VegasUSA
  4. 4.Colorado SpringsUSA

Personalised recommendations