, Volume 43, Issue 3, pp 348–370 | Cite as

Neural effects of insecticides in the honey bee

  • Luc P. Belzunces
  • Sylvie Tchamitchian
  • Jean-Luc Brunet
Review article


During their foraging activity, honey bees are often exposed to direct and residual contacts with pesticides, especially insecticides, all substances specifically designed to kill, repel, attract or perturb the vital functions of insects. Insecticides may elicit lethal and sublethal effects of different natures that may affect various biological systems of the honey bee. The first step in the induction of toxicity by a chemical is the interaction between the toxic compound and its molecular target. The action on the molecular target can lead to the induction of observable or non-visible effects. The toxic substance may impair important processes involved in cognitive functions, behaviour or integrity of physiological functions. This review is focused on the neural effects of insecticides that have repercussions on (a) cognitive functions, including learning and memory, habituation, olfaction and gustation, navigation and orientation; (b) behaviour, including foraging and (c) physiological functions, including thermoregulation and muscle activity.


insecticides neural effects mode of action molecular targets behaviour 



The authors thank Pr Bruno Lapied for his critical reading of the manuscript


  1. Abbadie, C., McManus, O.B., Sun, S.-Y., Bugianesi, R.M., Dai, G., Haedo, R.J., Herrington, J.B., Kaczorowski, G.J., Smith, M.M., Swensen, A.M., Warren, V.A., Williams, B., Arneric, S.P., Eduljee, C., Snutch, T.P., Tringham, E.W., Jochnowitz, N., Liang, A., MacIntyre, D.E., McGowan, E., Mistry, S., White, V.V., Hoyt, S.B., London, C., Lyons, K.A., Bunting, P.B., Volksdorf, S., Duffy, J.L. (2010) Analgesic effects of a substituted N-triazole oxindole (TROX-1). A state-dependent, voltage-gated calcium channel 2 blocker. J. Pharmacol. Exp. Ther. 334, 545–555PubMedCrossRefGoogle Scholar
  2. Adams, M.E., Miller, T.A. (1980) Neural and behavioral correlates of pyrethroid and DDT-type poisoning in the house fly, Musca domestica L. Pestic. Biochem. Physiol. 13, 137–147CrossRefGoogle Scholar
  3. Adigun, A.A., Wrench, N., Seidler, F.J., Slotkin, T.A. (2010) Neonatal Organophosphorus pesticide exposure alters the developmental trajectory of cell-signaling cascades controlling metabolism: differential effects of diazinon and parathion. Environ. Health Perspect. 118, 210–215PubMedCrossRefGoogle Scholar
  4. Aliouane, Y., El Hassani, A.K., Gary, V., Armengaud, C., Lambin, M., Gauthier, M. (2009) Subchronic exposure of honeybees to sublethal doses of pesticides: Effects on behavior. Environ. Toxicol. Chem. 28, 113–122PubMedCrossRefGoogle Scholar
  5. Antignac, E., Koch, B., Grolier, P., Cassand, P., Narbonne, J.F. (1990) Prochloraz as potent inhibitor of benzo-[A]-pyrene metabolism and mutagenic activity in rat-liver fractions. Toxicol. Lett. 54, 309–315PubMedCrossRefGoogle Scholar
  6. Armengaud, C., Causse, N., Aït-Oubah, J., Ginolhac, A., Gauthier, M. (2000) Functional cytochrome oxidase histochemistry in the honeybee brain. Brain Res. 859, 390–393PubMedCrossRefGoogle Scholar
  7. Atkins, E.L., Macdonald, R.L., McGovern, T.P., Beroza, M., Greywood-Hale, E.A. (1975) Repellent additives to reduce pesticide hazards to honeybees: laboratory testing. J. Apic. Res. 14, 85–97Google Scholar
  8. Atkins, E.L., Kellum, D., Neuman, K.J. (1977) Repellent additives to reduce pesticide hazards to honey bees. Am. Bee J. 117, 438–457Google Scholar
  9. Aussel, C., Breittmayer, J.P. (1993) Imidazole antimycotics inhibitors of cytochrome P450 increase phosphatidylserine synthesis similarly to K+-channel blockers in Jurkat T cells. FEBS Lett. 319, 155–158PubMedCrossRefGoogle Scholar
  10. Babin, M., Casado, S., Chana, A., Herradon, B., Segner, H., Tarazona, J.V., Navas, J.M. (2005) Cytochrome P4501A induction caused by the imidazole derivative Prochloraz in a rainbow trout cell line. Toxicol. in Vitro 19, 899–902PubMedCrossRefGoogle Scholar
  11. Bach, J., Snegaroff, J. (1989) Effects of the fungicide prochloraz on xenobiotic metabolism in rainbow-trout–In-vivo induction. Xenobiotica 19, 1–9PubMedCrossRefGoogle Scholar
  12. Balderrama, N., Nunez, J., Giurfa, M., Torrealba, J., DeAlbornoz, E.G., Almeida, L.O. (1996) A deterrent response in honeybee (Apis mellifera) foragers: Dependence on disturbance and season. J. Insect Physiol. 42, 463–470CrossRefGoogle Scholar
  13. Barbara, G., Grünewald, B., Paute, S., Gauthier, M., Raymond-Delpech, V. (2008) Study of nicotinic acetylcholine receptors on cultured antennal lobe neurones from adult honeybee brains. Invert. Neurosci. 8, 19–29PubMedCrossRefGoogle Scholar
  14. Barker, R.J., Lehner, Y., Kunzmann, M.R. (1980) Pesticides and honey bees–Nectar and pollen contamination in Alfalfa treated with dimethoate. Arch. Environ. Contam. Toxicol. 9, 125–133PubMedCrossRefGoogle Scholar
  15. Barron, A.B., Zhu, H., Robinson, G.E., Srinivasan, M.V. (2005) Influence of flight time and flight environment on distance communication by dancing honey bees. Insectes Sociaux 52, 402–407CrossRefGoogle Scholar
  16. Barton, K.A., Whiteley, H.R., Yang, N.S. (1987) Bacillus thuringiensis delta-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to Lepidopteran insects. Plant Physiol. 85, 1103–1109PubMedCrossRefGoogle Scholar
  17. Belzunces, L.P., Vandame, R., Gu, X.F. (1996) Modulation of honey bee thermoregulation by adrenergic compounds. Neuroreport 7, 1601–1604PubMedCrossRefGoogle Scholar
  18. Benzidane, Y., Touinsi, S., Motte, E., Jadas-Hécart, A., Communal, P.-Y., Leduc, L., Thany, S.H. (2010) Effect of thiamethoxam on cockroach locomotor activity is associated with its metabolite clothianidin. Pest Manag. Sci. 66, 1351–1359PubMedCrossRefGoogle Scholar
  19. Bernadou, A., Démares, F., Couret-Fauvel, T., Sandoz, J.C., Gauthier, M. (2009) Effect of fipronil on side-specific antennal tactile learning in the honeybee. J. Insect Physiol. 55, 1099–1106PubMedCrossRefGoogle Scholar
  20. Bitterman, M.E., Menzel, R., Fietz, A., Schafer, S. (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J. Comp. Psychol. 97, 107–119PubMedCrossRefGoogle Scholar
  21. Bloch, G. (2010) The Social Clock of the Honeybee. J. Biol. Rhythms 25, 307–317PubMedCrossRefGoogle Scholar
  22. Bordereau-Dubois, B., List, O., Calas-List, D., Marques, O., Communal, P.-Y., Thany, S.H., Lapied, B. (2012) Transmembrane potential polarization, calcium influx and receptor conformational state modulate the sensitivity of the imidacloprid-insensitive neuronal insect nAChR to the neonicotinoid insecticides. J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.111.188060
  23. Bos, C., Masson, C. (1983) Repellent effect of deltamethrin on honey bees. Agronomie 3, 545–553CrossRefGoogle Scholar
  24. Bounias, M., Dujin, N., Popeskovic, D.S. (1985) Sublethal effects of a synthetic pyrethroid, deltamethrin, on the glycemia, the lipemia, and the gut alkaline phosphatases of honeybees. Pestic. Biochem. Physiol. 24, 149–160CrossRefGoogle Scholar
  25. Brandon, N.J., Jovanovic, J.N., Smart, T.G., Moss, S.J. (2002) Receptor for activated C kinase-1 facilitates protein kinase C-dependent phosphorylation and functional modulation of GABA(A) receptors with the activation of G-protein-coupled receptors. J. Neurosci. 22, 6353–6361PubMedGoogle Scholar
  26. Braun, G., Bicker, G. (1992) Habituation of an appetitive reflex in the honeybee. J. Neurophysiol. 67, 588–598PubMedGoogle Scholar
  27. Brunet, J.L., Badiou, A., Belzunces, L.P. (2005) In vivo metabolic fate of [14C]-acetamiprid in six biological compartments of the honeybee, Apis mellifera L. Pest Manag. Sci. 61, 742–748PubMedCrossRefGoogle Scholar
  28. Caboni, P., Sammelson, R.E., Casida, J.E. (2003) Phenylpyrazole insecticide photochemistry, metabolism, and GABAergic action: Ethiprole compared with fipronil. J. Agric. Food Chem. 51, 7055–7061PubMedCrossRefGoogle Scholar
  29. Calore, E.E., Cavaliere, M.J., Puga, F.R., Calore, N.M.P., Rosa, A.Rd., Weg, R., Dias, Sd.S., Santos, R.Pd. (2000) Histologic Peripheral Nerve Changes in Rats Induced by Deltamethrin. Ecotoxicol. Environ. Saf. 47, 82–86PubMedCrossRefGoogle Scholar
  30. Cano Lozano, V., Gauthier, M. (1998) Effects of the Muscarinic Antagonists Atropine and Pirenzepine on Olfactory Conditioning in the Honeybee. Pharmacol. Biochem. Behav. 59, 903–907PubMedCrossRefGoogle Scholar
  31. Cano Lozano, V., Bonnard, E., Gauthier, M., Richard, D. (1996) Mecamylamine-induced impairment of acquisition and retrieval of olfactory conditioning in the honeybee. Behav. Brain Res. 81, 215–222CrossRefGoogle Scholar
  32. Cano Lozano, V., Armengaud, C., Gauthier, M. (2001) Memory impairment induced by cholinergic antagonists injected into the mushroom bodies of the honeybee. J. Comp. Physiol. A 187, 249–254CrossRefGoogle Scholar
  33. Capaldi, E.A., Smith, A.D., Osborne, J.L., Fahrbach, S.E., Farris, S.M., Reynolds, D.R., Edwards, A.S., Martin, A., Robinson, G.E., Poppy, G.M., Riley, J.R. (2000) Ontogeny of orientation flight in the honeybee revealed by harmonic radar. Nature 403, 537–540PubMedCrossRefGoogle Scholar
  34. Chalvet-Monfray, K., Belzunces, L.P., Colin, M.E., Fleche, C., Sabatier, P. (1995) Modelling synergistic effects of two toxic agents in the honeybee. J. Biol. Syst. 3, 253–263CrossRefGoogle Scholar
  35. Chalvet-Monfray, K., Auger, P., Belzunces, L.P., Fleche, C., Sabatier, P. (1996a) Modelling based method for pharmacokinetic hypotheses test. Acta Biotheoretica 44, 335–348CrossRefGoogle Scholar
  36. Chalvet-Monfray, K., Belzunces, L.P., Colin, M.E., Fleche, C., Sabatier, P. (1996b) Synergy between deltamethrin and prochloraz in bees: Modeling approach. Environ. Toxicol. Chem. 15, 525–534CrossRefGoogle Scholar
  37. Chambers, J.E. (1992) The role of target site activation of phosphorothionates in acute Toxicity. In: Chambers, J.E., Levi, P.E. (eds.) Organophosphates: Chemistry, Fate and effects, pp. 229–239. Academic, San DiegoGoogle Scholar
  38. Clark, J., Symington, S. (2007) Pyrethroid action on calcium channels: neurotoxicological implications. Invert. Neurosci. 7, 3–16PubMedCrossRefGoogle Scholar
  39. Clinch, P.G., Palmer-Jones, T., Forster, I.W., Jones, T.P. (1973) Effect on honey bees of dicrotophos and methomyl applied as sprays to white clover. New Zealand J. Exp. Agric. 1, 97–99CrossRefGoogle Scholar
  40. Colin, M.E., Belzunces, L.P. (1992) Evidence of synergy between prochloraz and deltamethrin in Apis mellifera L—A convenient biological approach. Pestic. Sci. 36, 115–119CrossRefGoogle Scholar
  41. Colin, M.E., Bonmatin, J.M., Moineau, I., Gaimon, C., Brun, S., Vermandere, J.P. (2004) A method to quantify and analyze the foraging activity of honey bees: Relevance to the sublethal effects induced by systemic insecticides. Arch. Environ. Contam. Toxicol. 47, 387–395PubMedCrossRefGoogle Scholar
  42. Colliot, F., Kukorowski, K.A., Hawkins, D.W., Roberts, D.A. (1992) Fipronil: a new soil and foliar broad spectrum insecticide. Proc., Brighton Crop Protect. Conf., Pests and Diseases, 1992 Brighton, November 23–26, 1992., 29–34Google Scholar
  43. Courjaret, R., Lapied, B. (2001) Complex intracellular messenger pathways regulate one type of neuronal alpha-bungarotoxin-resistant nicotinic acetylcholine receptors expressed in insect neurosecretory cells (dorsal unpaired median neurons). Mol. Pharmacol. 60, 80–91PubMedGoogle Scholar
  44. Courjaret, R., Grolleau, F., Lapied, B. (2003) Two distinct calcium-sensitive and -insensitive PKC up- and down-regulate an alpha-bungarotoxin-resistant nAChR1 in insect neurosecretory cells (DUM neurons). Eur. J. Neurosci. 17, 2023–2034PubMedCrossRefGoogle Scholar
  45. Couvillon, M.J., Barton, S.N., Cohen, J.A., Fabricius, O.K., Kaercher, M.H., Cooper, L.S., Silk, M.J., Helantera, H., Ratnieks, F.L.W. (2010) Alarm pheromones do not mediate rapid shifts in honey bee guard acceptance threshold. J. Chem. Ecol. 36, 1306–1308PubMedCrossRefGoogle Scholar
  46. Dacke, M., Srinivasan, M.V. (2007) Honeybee navigation: distance estimation in the third dimension. J. Exp. Biol. 210, 845–853PubMedCrossRefGoogle Scholar
  47. Danka, R.G., Collison, C.H. (1987) Laboratory evaluation of dimethoate repellence to honey bees. J. Appl. Entomol. 104, 211–214CrossRefGoogle Scholar
  48. Decourtye, A., Lacassie, E., Pham-Delegue, M.H. (2003) Learning performances of honeybees (Apis mellifera L) are differentially affected by imidacloprid according to the season. Pest Manag. Sci. 59, 269–278PubMedCrossRefGoogle Scholar
  49. Decourtye, A., Armengaud, C., Renou, M., Devillers, J., Cluzeau, S., Gauthier, M., Pham-Delègue, M.-H. (2004a) Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pestic. Biochem. Physiol. 78, 83–92CrossRefGoogle Scholar
  50. Decourtye, A., Devillers, J., Cluzeau, S., Charreton, M., Pham-Delègue, M.-H. (2004b) Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotoxicol. Environ. Saf. 57, 410–419PubMedCrossRefGoogle Scholar
  51. Decourtye, A., Devillers, J., Genecque, E., Le Menach, K., Budzinski, H., Cluzeau, S., Pham-Delegue, M.H. (2005) Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch. Environ. Contam. Toxicol. 48, 242–250PubMedCrossRefGoogle Scholar
  52. Decourtye, A., Devillers, J., Aupinel, P., Brun, F., Bagnis, C., Fourrier, J., Gauthier, M. (2011) Honeybee tracking with microchips: a new methodology to measure the effects of pesticides. Ecotoxicology 20, 429–437PubMedCrossRefGoogle Scholar
  53. Déglise, P., Grünewald, B., Gauthier, M. (2002) The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neurosci. Lett. 321, 13–16PubMedCrossRefGoogle Scholar
  54. Delabie, J., Bos, C., Fonta, C., Masson, C. (1985) Toxic and repellent effects of cypermethrin on the honeybee—Laboratory, glasshouse and field experiments. Pestic. Sci. 16, 409–415CrossRefGoogle Scholar
  55. Detzel, A., Wink, M. (1993) Attraction, deterrence or intoxication of bees (Apis mellifera) by plant allelochemicals. Chemoecology 4, 8–18CrossRefGoogle Scholar
  56. Dupuis, J.P., Bazelot, M., Barbara, G.S., Paute, S., Gauthier, M., Raymond-Delpech, V. (2010) Homomeric RDL and heteromeric RDL/LCCH3 GABA receptors in the honeybee antennal lobes: Two candidates for inhibitory transmission in olfactory processing. J. Neurophysiol. 103, 458–468PubMedCrossRefGoogle Scholar
  57. Dupuis, J.P., Gauthier, M., Raymond-Delpech, V. (2011) Expression patterns of nicotinic subunits alpha 2, alpha 7, alpha 8, and beta 1 affect the kinetics and pharmacology of ACh-induced currents in adult bee olfactory neuropiles. J. Neurophysiol. 106, 1604–1613PubMedCrossRefGoogle Scholar
  58. El Hassani, A.K., Dacher, M., Gauthier, M., Armengaud, C. (2005) Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera). Pharmacol. Biochem. Behav. 82, 30–39PubMedCrossRefGoogle Scholar
  59. El Hassani, A.K., Dacher, M., Gary, V., Lambin, M., Gauthier, M., Armengaud, C. (2008) Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera). Arch. Environ. Contam. Toxicol. 54, 653–661PubMedCrossRefGoogle Scholar
  60. El Hassani, A.K., Dupuis, J.P., Gauthier, M., Armengaud, C. (2009) Glutamatergic and GABAergic effects of fipronil on olfactory learning and memory in the honeybee. Invert. Neurosci. 9, 91–100PubMedCrossRefGoogle Scholar
  61. Elbert, A., Overbeck, H., Iwaya, K., Tsuboi, S., (1990) Imidacloprid, a novel systemic nitromethylene analogue insecticide for crop protection. Brighton Crop Protection Conference, Pests and Diseases–1990. 1, 21–28Google Scholar
  62. Enan, E., Matsumura, F. (1992) Specific-inhibition of calcineurin by type-II synthetic pyrethroid insecticides. Biochem. Pharmacol. 43, 1777–1784PubMedCrossRefGoogle Scholar
  63. Epstein, L.H., Robinson, J.L., Roemmich, J.N., Marusewski, A. (2011) Slow rates of habituation predict greater zBMI gains over 12 months in lean children. Eating Behav. 12, 214–218CrossRefGoogle Scholar
  64. Esch, H.E., Zhang, S.W., Srinivasan, M.V., Tautz, J. (2001) Honeybee dances communicate distances measured by optic flow. Nature 411, 581–583PubMedCrossRefGoogle Scholar
  65. Esquivel-Senties, M.S., Barrera, I., Ortega, A., Vega, L. (2010) Organophosphorous pesticide metabolite (DEDTP) induces changes in the activation status of human lymphocytes by modulating the interleukin 2 receptor signal transduction pathway. Toxicol. Appl. Pharmacol. 248, 122–133PubMedCrossRefGoogle Scholar
  66. Es-Salah, Z., Lapied, B., Le Goff, G., Hamon, A. (2008) RNA editing regulates insect gamma-aminobutyric acid receptor function and insecticide sensitivity. Neuroreport 19, 939–943PubMedCrossRefGoogle Scholar
  67. Evrard, E., Marchand, J., Theron, M., Pichavant-Rafini, K., Durand, G., Quiniou, L., Laroche, J. (2010) Impacts of mixtures of herbicides on molecular and physiological responses of the European flounder Platichthys flesus. Comp. Biochem. Physiol. C 152, 321–331Google Scholar
  68. Fahrenholz, L., Lamprecht, I., Schricker, B. (1989) Thermal investigations of a honey bee colony: thermoregulation of the hive during summer and winter and heat production of members of different bee castes. J. Comp. Physiol. B 159, 551–560CrossRefGoogle Scholar
  69. Faiz, M.S., Mughal, S., Memon, A.Q. (2011) Acute and Late Complications of Organophosphate Poisoning. J. College Phys. Surg. Pakistan 21, 288–290Google Scholar
  70. Farina, W.M., Wainselboim, A.J. (2001) Changes in the thoracic temperature of honeybees while receiving nectar from foragers collecting at different reward rates. J. Exp. Biol. 204, 1653–1658PubMedGoogle Scholar
  71. Ford, K.A., Casida, J.E. (2006) Unique and Common Metabolites of Thiamethoxam, Clothianidin, and Dinotefuran in Mice. Chem. Res. Toxicol. 19, 1549–1556PubMedCrossRefGoogle Scholar
  72. Fukuto, T.R. (1990) Mechanism of action of organophosphorus and carbamate insecticides. Environ. Health Perspect. 87, 245–254PubMedCrossRefGoogle Scholar
  73. Gallai, N., Salles, J.-M., Settele, J., Vaissiere, B.E. (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821CrossRefGoogle Scholar
  74. Galloway, T., Handy, R. (2003) Immunotoxicity of organophosphorous pesticides. Ecotoxicology 12, 345–363PubMedCrossRefGoogle Scholar
  75. Gauthier, M. (2010) State of the art on insect nicotinic acetylcholine receptor function in learning and memory. In: Thany, S.H. (ed.) Insect Nicotinic Acetylcholine Receptors, pp. 97–115. Springer, BerlinCrossRefGoogle Scholar
  76. Gauthier, M., Cano Lozano, V., Zaoujal, A., Richard, D. (1994) Effects of intracranial injections of scopolamine on olfactory conditioning retrieval in the honeybee. Behav. Brain Res. 63, 145–149PubMedCrossRefGoogle Scholar
  77. Gauthier, M., Dacher, M., Thany, S.H., Niggebrügge, C., Déglise, P., Kljucevic, P., Armengaud, C., Grünewald, B. (2006) Involvement of [alpha]-bungarotoxin-sensitive nicotinic receptors in long-term memory formation in the honeybee (Apis mellifera). Neurobiol. Learn. Mem. 86, 164–174PubMedCrossRefGoogle Scholar
  78. Gawleta, N., Zimmermann, Y., Eltz, T. (2005) Repellent foraging scent recognition across bee families. Apidologie 36, 325–330CrossRefGoogle Scholar
  79. Giurfa, M. (1993) The repellent scent-mark of the honeybee Apis mellifera ligustica and its role as communication cue during foraging. Insectes Soc. 40, 59–67CrossRefGoogle Scholar
  80. Glynn, P. (2005) Neuropathy target esterase and phospholipid deacylation. Biochim. Biophys. Acta -Mol. Cell Biol. Lipids 1736, 87–93Google Scholar
  81. Goldberg, F., Grünewald, B., Rosenboom, H., Menzel, R. (1999) Nicotinic acetylcholine currents of cultured Kenyon cells from the mushroom bodies of the honey bee Apis mellifera. J. Physiol. 514, 759–768PubMedCrossRefGoogle Scholar
  82. Gordon, C.J., Watkinson, W.P. (1988) Behavioral and autonomic thermoregulation in the rat following chlordimeform administration. Neurotoxicol. Teratol. 10, 215–219PubMedCrossRefGoogle Scholar
  83. Goulson, D., Chapman, J.W., Hughes, W.O.H. (2001) Discrimination of unrewarding flowers by bees; Direct detection of rewards and use of repellent scent marks. J. Insect Behav. 14, 669–678CrossRefGoogle Scholar
  84. Grosman, N., Diel, F. (2005) Influence of pyrethroids and piperonyl butoxide on the Ca2+-ATPase activity of rat brain synaptosomes and leukocyte membranes. Int. Immunopharmacol. 5, 263–270PubMedCrossRefGoogle Scholar
  85. Grünewald, B., Wersing, A. (2008) An ionotropic GABA receptor in cultured mushroom body Kenyon cells of the honeybee and its modulation by intracellular calcium. J. Comp. Physiol. A 194, 329–340CrossRefGoogle Scholar
  86. Guez, D., Suchail, S., Gauthier, M., Maleszka, R., Belzunces, L.P. (2001) Contrasting effects of imidacloprid on habituation in 7- and 8-day-old honeybees (Apis mellifera). Neurobiol. Learn. Mem. 76, 183–191PubMedCrossRefGoogle Scholar
  87. Guez, D., Belzunces, L.P., Maleszka, R. (2003) Effects of imidacloprid metabolites on habituation in honeybees suggest the existence of two subtypes of nicotinic receptors differentially expressed during adult development. Pharmacol. Biochem. Behav. 75, 217–222PubMedCrossRefGoogle Scholar
  88. Guez, D., Zhang, S.W., Srinivasan, M.V. (2005) Methyl parathion modifies foraging behaviour in honeybees (Apis mellifera). Ecotoxicology 14, 431–437PubMedCrossRefGoogle Scholar
  89. Guez, D., Zhu, H., Zhang, S.W., Srinivasan, M.V. (2010) Enhanced cholinergic transmission promotes recall in honeybees. J. Insect Physiol. 56, 1341–1348PubMedCrossRefGoogle Scholar
  90. Han, P., Niu, C.-Y., Lei, C.-L., Cui, J.-J., Desneux, N. (2010) Use of an innovative T-tube maze assay and the proboscis extension response assay to assess sublethal effects of GM products and pesticides on learning capacity of the honey bee Apis mellifera L. Ecotoxicology 19, 1612–1619PubMedCrossRefGoogle Scholar
  91. Han, S., Zhang, Y., Chen, Q., Duan, Y., Zheng, T., Hu, X., Zhang, Z., Zhang, L. (2011) Fluconazole inhibits hERG K+ channel by direct block and disruption of protein trafficking. Eur. J. Pharmacol. 650, 138–144PubMedCrossRefGoogle Scholar
  92. Hanegan, J.L. (1973) Control of heart rate in Cecropia moths; Response to thermal stimulation. J. Exp. Biol. 59, 67–76Google Scholar
  93. Heinrich, B. (1974) Thermoregulation in endothermic insects. Science 185, 747–756PubMedCrossRefGoogle Scholar
  94. Heinrich, B. (1980a) Mechanisms of body-temperature regulation in honeybees, Apis mellifera. 1. Regulation of head temperature. J. Exp. Biol. 85, 61–72Google Scholar
  95. Heinrich, B. (1980b) Mechanisms of body-temperature regulation in honeybees, Apis mellifera. 2. Regulation of thoracic temperature at high air temperatures. J. Exp. Biol. 85, 73–87Google Scholar
  96. Hofte, H., Whiteley, H.R. (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53, 242–255PubMedGoogle Scholar
  97. Horváth, F., Erdei, L., Wodala, B., Homann, U., Thiel, G. (2002) K+ outward rectifying channels as targets of phosphatase inhibitor deltamethrin in Vicia faba guard cells. J. Plant Physiol. 159, 1097–1103CrossRefGoogle Scholar
  98. Ikeda, T., Zhao, X., Salgado, V., Kono, Y., Yeh, J.Z., Narahashi, T. (2003) Fipronil block of glutamate-activated chloride currents in cockroach neurons. Toxicol. Sci. 72, 310–310Google Scholar
  99. Ito, A., Sasaguri, Y., Kitada, S., Kusaka, Y., Kuwano, K., Masutomi, K., Mizuki, E., Akao, T., Ohba, M. (2004) A Bacillus thuringiensis crystal protein with selective cytocidal action to human cells. J. Biol. Chem. 279, 21282–21286PubMedCrossRefGoogle Scholar
  100. James, C. (2006) Global Status of Commercialized Biotech/GM Crops: 2006. ISAAA Brief ISAAA, Ithaca, NYGoogle Scholar
  101. Jansens, S., Clercq, R.d., Reynaerts, A., Peferoen, M., De Clercq, R. (1992) Greenhouse evaluation of transgenic tomato plants, expressing a Bacillus thuringiensis insecticidal crystal protein, for control of Helicoverpa armigera (Lepidoptera: Noctuidae). Mededelingen van de Faculteit Landbouwwetenschappen, Universiteit Gent 57, 515–522Google Scholar
  102. Johnston, A.M., Lohr, J., Moes, J., Solomon, K.R., Zaborski, E.R. (1986) Toxicity of synergized and unsynergized nitromethylene heterocycle insecticide (SD 35651) to susceptible and resistant strains of Musca domestica (Diptera, Muscidae). J. Econ. Entomol. 79, 1439–1442PubMedGoogle Scholar
  103. Johnston, G., Dawson, A., Walker, C.H. (1996) Effects of prochloraz and malathion on the red-legged partridge: A semi-natural field study. Environ. Pollut. 91, 217–225PubMedCrossRefGoogle Scholar
  104. Jokanovic, M., Kosanovic, M., Brkic, D., Vukomanovic, P. (2011) Organophosphate induced delayed polyneuropathy in man: An overview. Clin. Neurol. Neurosurg. 113, 7–10PubMedCrossRefGoogle Scholar
  105. Joshi, S.C., Bansal, B., Jasuja, N.D. (2011) Evaluation of reproductive and developmental toxicity of cypermethrin in male albino rats. Toxicol. Environ. Chem. 93, 593–602CrossRefGoogle Scholar
  106. Kabeer, S., Ahammad, I., Rao, K.S.P., Desaiah, D. (1987) Pyrethroid inhibition of basal and calmodulin stimulated Ca2+-ATPase and adenylate cyclase in rat brain. J. Appl. Toxicol. 7, 75–80CrossRefGoogle Scholar
  107. Kadala, A., Charreton, M., Jakob, I., Le Conte, Y., Collet, C. (2011) A use-dependent sodium current modification induced by type I pyrethroid insecticides in honeybee antennal olfactory receptor neurons. NeuroToxicolology 32, 320–330CrossRefGoogle Scholar
  108. Kakko, I., Toimela, T., Tähti, H. (2000) Piperonyl butoxide potentiates the synaptosome ATPase inhibiting effect of pyrethrin. Chemosphere 40, 301–305PubMedCrossRefGoogle Scholar
  109. Kammer, A.E. (1968) Motor patterns during flight and warm-up in Lepidoptera. J. Exp. Biol. 48, 89–109Google Scholar
  110. Kapteyn, J.C., Milling, R.J., Simpson, D.J., Dewaard, M.A. (1994) Inhibition of sterol biosynthesis in cell-free-extracts of Botrytis cinerea by prochloraz and prochloraz analogs. Pestic. Sci. 40, 313–319CrossRefGoogle Scholar
  111. Kather, R., Drijfhout, F.P., Martin, S.J. (2011) Task group differences in cuticular lipids in the honey bee Apis mellifera. J. Chem. Ecol. 37, 205–212PubMedCrossRefGoogle Scholar
  112. Kikuchi, K., Nagatomo, T., Abe, H., Kawakami, K., Duff, H.J., Makielski, J.C., January, C.T., Nakashima, Y. (2005) Blockade of HERG cardiac K+ current by antifungal drug miconazole. British J. Pharmacol. 144, 840–848CrossRefGoogle Scholar
  113. Kleinhenz, M., Bujok, B., Fuchs, S., Tautz, J. (2003) Hot bees in empty broodnest cells: heating from within. J. Exp. Biol. 206, 4217–4231PubMedCrossRefGoogle Scholar
  114. Klis, S.F.L., Nijman, N.J., Vijverberg, H.P.M., Vandenbercken, J. (1991a) Phenylpyrazoles, a new class of pesticide—Effects on neuromuscular-transmission and acetylcholine responses. Pestic. Sci. 33, 213–222CrossRefGoogle Scholar
  115. Klis, S.F.L., Vijverberg, H.P.M., Vandenbercken, J. (1991b) Phenylpyrazoles, a new class of pesticides—An electrophysiological investigation into basic effects. Pestic. Biochem. Physiol. 39, 210–218CrossRefGoogle Scholar
  116. Kuwabara, M. (1957) Bildung des bedingten reflexes von Pavlovs typus bei der honigbiene, Apis mellifica. J. Fac Sci Hokkaido Uni. Ser. VI Zool. 13, 458–464Google Scholar
  117. Laignelet, L., Narbonne, J.F., Lhuguenot, J.C., Riviere, J.L. (1989) Induction and inhibition of rat-liver cytochrome(s) P-450 by an imidazole fungicide (prochloraz). Toxicology 59, 271–284PubMedCrossRefGoogle Scholar
  118. Lambin, M., Armengaud, C., Raymond, S., Gauthier, M. (2001) Imidacloprid-induced facilitation of the proboscis extension reflex habituation in the honeybee. Arch. Insect Biochem. Physiol. 48, 129–134PubMedCrossRefGoogle Scholar
  119. Laurent, F.M., Rathahao, E. (2003) Distribution of [14C]-imidacloprid in sunflowers (Helianthus annuus L.) following seed treatment. J. Agric. Food Chem 51, 8005–8010CrossRefGoogle Scholar
  120. Lavialle-Defaix, C., Apaire-Marchais, V., Legros, C., Pennetier, C., Mohamed, A., Licznar, P., Corbel, V., Lapied, B. (2011) Anopheles gambiae mosquito isolated neurons: A new biological model for optimizing insecticide/repellent efficacy. J. Neurosci. Meth. 200, 68–73CrossRefGoogle Scholar
  121. Lax, A., Soler, F., Fernandez-Belda, F. (2002) Inhibition of sarcoplasmic reticulum Ca2+-ATPase by miconazole. Am. J. of Physiol.–Cell Physiol. 283, C85–C92Google Scholar
  122. Leemans, J., Reynaerts, A., Hofte, H., Peferoen, M., Mellaert, H.v., Joos, H., Van Mellaert, H. (1990) Insecticidal crystal proteins from Bacillus thuringiensis and their use in transgenic crops. Alan R. Liss, New YorkGoogle Scholar
  123. Li, P., Akk, G. (2008) The insecticide fipronil and its metabolite fipronil sulphone inhibit the rat α1β2γ2L GABAA receptor. British J. Pharmacol. 155, 783–794CrossRefGoogle Scholar
  124. Li, H., Feng, T., Liang, P., Shi, X., Gao, X., Jiang, H. (2006a) Effect of temperature on toxicity of pyrethroids and endosulfan, activity of mitochondrial Na+-K+-ATPase and Ca2+-Mg2+-ATPase in Chilo suppressalis (Walker) (Lepidoptera: Pyralidae). Pestic. Biochem. Physiol. 86, 151–156CrossRefGoogle Scholar
  125. Li, H., Feng, T., Tao, L., Liu, X., Jiang, H., Lin, R., Liang, P., Gao, X., Li, H.P., Feng, T., Tao, L.M., Liu, X., Jiang, H., Lin, R.H., Liang, P., Gao, X.W. (2006b) Inhibition of ATPase activity in mitochondria of Chilo suppressalis by nine common insecticides. Acta Entomol. Sinica 49, 254–259Google Scholar
  126. Li, J., Shao, Y., Ding, Z., Bao, H., Liu, Z., Han, Z., Millar, N.S. (2010a) Native subunit composition of two insect nicotinic receptor subtypes with differing affinities for the insecticide imidacloprid. Insect Biochem. Mol. Biol. 40, 17–22PubMedCrossRefGoogle Scholar
  127. Li, Y., Meissle, M., Romeis, J. (2010b) Use of maize pollen by adult Chrysoperla carnea (Neuroptera: Chrysopidae) and fate of Cry proteins in Bt-transgenic varieties. J. Insect Physiol. 56, 157–164PubMedCrossRefGoogle Scholar
  128. Li, Z.-H., Zlabek, V., Grabic, R., Li, P., Machova, J., Velisek, J., Randak, T. (2010c) Effects of exposure to sublethal propiconazole on the antioxidant defense system and Na+-K+-ATPase activity in brain of rainbow trout, Oncorhynchus mykiss. Aquatic Toxicol. 98, 297–303CrossRefGoogle Scholar
  129. Lind, R.J., Clough, M.S., Reynolds, S.E., Earley, F.G.P. (1998) [3H]-Imidacloprid Labels high- and low-affinity nicotinic acetylcholine receptor-like binding sites in the Aphid Myzus persicae (Hemiptera: Aphididae). Pestic. Biochem. Physiol. 62, 3–14CrossRefGoogle Scholar
  130. Linn Jr., C.E., Roelofs, W.L. (1984) Sublethal effects of neuroactive compounds on pheromone response thresholds in male oriental fruit moths. Arch. Insect Biochem. Physiol. 1, 331–344CrossRefGoogle Scholar
  131. Maeder, V., Escher, B.I., Scheringer, M., Hungerbuhler, K. (2004) Toxic ratio as an indicator of the intrinsic toxicity in the assessment of persistent, bioaccumulative, and toxic chemicals. Environ. Sci. Technol. 38, 3659–3666PubMedCrossRefGoogle Scholar
  132. Maisonnasse, A., Lenoir, J.-C., Beslay, D., Crauser, D., Le Conte, Y. (2010) E-b-Ocimene, a volatile brood pheromone involved in social regulation in the honey bee colony (Apis mellifera). PLos One 5(10): e13531Google Scholar
  133. Mamood, A.N., Waller, G.D. (1990) Recovery of learning responses by honeybees following a sublethal exposure to permethrin. Physiol. Entomol. 15, 55–60CrossRefGoogle Scholar
  134. Mason, M.J., Mayer, B., Hymel, L.J. (1993) Inhibition of Ca2+ transport pathways in thymic lymphocytes by econazole, miconazole and SFK-96365. Am. J. Physiol. 264, C654–C662PubMedGoogle Scholar
  135. Meled, M., Thrasyvoulou, A., Belzunces, L.P. (1998) Seasonal variations in susceptibility of Apis mellifera to the synergistic action of prochloraz and deltamethrin. Environ. Toxicol. Chem. 17, 2517–2520Google Scholar
  136. Menzel, R., Erber, J., Masuhr, J. (1974) Learning and memory in the honeybee. In: Brown, B. (ed.) Experimental analysis of insect behaviour, pp. 195–217. Springer Verlag, BerlinCrossRefGoogle Scholar
  137. Menzel, R., Greggers, U., Smith, A., Berger, S., Brandt, R., Brunke, S., Bundrock, G., Hülse, S., Plümpe, T., Schaupp, F., Schüttler, E., Stach, S., Stindt, J., Stollhoff, N., Watzl, S. (2005) Honey bees navigate according to a map-like spatial memory. Proc. Nat. Acad. Sci. USA 102, 3040–3045PubMedCrossRefGoogle Scholar
  138. Menzel, R., De Marco, R.J., Greggers, U. (2006) Spatial memory, navigation and dance behaviour in Apis mellifera. J. Comp. Physiol. A 192, 889–903CrossRefGoogle Scholar
  139. Mommaerts, V., Reynders, S., Boulet, J., Besard, L., Sterk, G., Smagghe, G. (2010) Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behavior. Ecotoxicology 19, 207–215PubMedCrossRefGoogle Scholar
  140. Moore, D. (2001) Honey bee circadian clocks: behavioral control from individual workers to whole-colony rhythms. J. Insect Physiol. 47, 843–857CrossRefGoogle Scholar
  141. Murillo, L., Hamon, A., Es-Salah-Lamoureux, Z., Itier, V., Quinchard, S., Lapied, B. (2011) Inhibition of protein kinase C decreases sensitivity of GABA receptor subtype to fipronil insecticide in insect neurosecretory cells. NeuroToxicology 32, 828–835Google Scholar
  142. Murphy Jr., B.F., Heath, J.E. (1983) Temperature sensitivity in the prothoracic ganglion of the cockroach, Periplaneta americana, and its relationship to thermoregulation. J. Exp. Biol. 105, 305–315Google Scholar
  143. Narahashi, T., Zhao, X., Ikeda, T., Salgado, V.L., Yeh, J.Z. (2010) Glutamate-activated chloride channels: Unique fipronil targets present in insects but not in mammals. Pestic. Biochem. Physiol. 97, 149–152PubMedCrossRefGoogle Scholar
  144. Nauen, R., Ebbinghaus-Kintscher, U., Schmuck, R. (2001) Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae). Pest Manag. Sci. 57, 577–586PubMedCrossRefGoogle Scholar
  145. Nauen, R., Ebbinghaus-Kintscher, U., Salgado, V.L., Kaussmann, M. (2003) Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pestic. Biochem. Physiol. 76, 55–69CrossRefGoogle Scholar
  146. Neal, A.P., Yuan, Y., Atchison, W.D. (2010) Allethrin Differentially Modulates Voltage-Gated Calcium Channel Subtypes in Rat PC12 Cells. Toxicol. Sci. 116, 604–613PubMedCrossRefGoogle Scholar
  147. Nielsen, S.A., Brodsgaard, C.J., Hansen, H. (2000) Effects on detoxification enzymes in different life stages of honey bees (Apis mellifera L., Hymenoptera: Apidae) treated with a synthetic pyrethroid (flumethrin). Atla-Altern. Labor. Anim. 28, 437–443Google Scholar
  148. Nigg, H.N., Russ, R.V., Mahon, W.D., Stamper, J.H., Knapp, J.L. (1991) Contamination of sucrose solution with aldicarb sulfoxide inhibits foraging by honeybees (Hymenoptera, Apidae). J. Econ. Entomol. 84, 810–813Google Scholar
  149. Ohashi, K., D’Souza, D., Thomson, J.D. (2010) An automated system for tracking and identifying individual nectar foragers at multiple feeders. Behav. Ecol. Sociobiol. 64, 891–897CrossRefGoogle Scholar
  150. Olivari, C., Pugliarello, M.C., Cocucci, M.C., Rasicaldogno, F. (1991) Effects of penconazole on plasma-membranes isolated from radish seedlings. Pestic. Biochem. Physiol. 41, 8–13CrossRefGoogle Scholar
  151. Pahl, M., Zhu, H., Tautz, J., Zhang, S. (2011) Large Scale Homing in Honeybees. PLos One 6, e19669PubMedCrossRefGoogle Scholar
  152. Pande, Y.D., Bandopadhyay, S. (1985) Effect of fenitrothion on the foraging activity of honey bees on Cajanus cajan in Tripura. Indian Bee J. 47, 42–43Google Scholar
  153. Papaefthimiou, C., Theophilidis, G. (2001) The Cardiotoxic action of the pyrethroid insecticide deltamethrin, the azole fungicide prochloraz, and their synergy on the semi-isolated heart of the Bbee Apis mellifera macedonica. Pestic. Biochem. Physiol. 69, 77–91CrossRefGoogle Scholar
  154. Papaefthimiou, C., Pavlidou, V., Gregorc, A., Theophilidis, G. (2002) The action of 2,4-Dichlorophenoxyacetic acid on the isolated heart of insect and amphibia. Environ. Toxicol. Pharmacol. 11, 127–140PubMedCrossRefGoogle Scholar
  155. Papaefthimiou, C., Zafeiridou, G., Topoglidi, A., Chaleplis, G., Zografou, S., Theophilidis, G. (2003) Triazines facilitate neurotransmitter release of synaptic terminals located in hearts of frog (Rana ridibunda) and honeybee (Apis mellifera) and in the ventral nerve cord of a beetle (Tenebrio molitor). Comp. Biochem. Physiol. C 135, 315–330Google Scholar
  156. Pennetier, C., Costantini, C., Corbel, V., Licciardi, S., Dabire, R.K., Lapied, B., Chandre, F., Hougard, J.M. (2009) Synergy between repellents and organophosphates on bed nets: efficacy and behavioural response of natural free-flying An. gambiae mosquitoes. PLos One 4, e7896PubMedCrossRefGoogle Scholar
  157. Petroianu, G., Karcher, B., Kern, N., Bergler, W., Rufer, R. (2001) Paraoxon sensitive phenylvalerate hydrolase in assessing the severity of acute paraoxon poisoning. J. Toxicol. Clin. Toxicol. 39, 27–31PubMedCrossRefGoogle Scholar
  158. Pigott, C.R., Ellar, D.J. (2007) Role of receptors in Bacillus thuringiensis crystaltoxin activity. Microbiol. Mol. Biol. Rev. 71, 255–281PubMedCrossRefGoogle Scholar
  159. Pilling, E.D., Jepson, P.C. (1993) Synergism between EBI fungicides and a pyrethroid insecticide in the honeybee (Apis mellifera). Pestic. Sci. 39, 293–297CrossRefGoogle Scholar
  160. Pilling, E.D., Bromley-Challenor, K.A.C., Walker, C.H., Jepson, P.C. (1995) Mechanism of synergism between the pyrethroid insecticide lambda-cyhalothrin and the imidazole fungicide prochloraz, in the honeybee (Apis mellifera L). Pestic. Biochem. Physiol. 51, 1–11CrossRefGoogle Scholar
  161. Polyzou, A., Froment, M.T., Masson, P., Belzunces, L.P. (1998) Absence of a protective effect of the Oxime 2-PAM toward paraoxon-poisoned honey bees: Acetylcholinesterase reactivation not at fault. Toxicol. Appl. Pharmacol. 152, 184–192PubMedCrossRefGoogle Scholar
  162. Punzo, F. (1993) Detoxification enzymes and the effects of temperature on the toxicity of pyrethroids to the fall armyworm, Spodoptera frugiperda (Lepidoptera, Noctuidae). Comp. Biochem. Physiol. C 105, 155–158CrossRefGoogle Scholar
  163. Ramirez-Romero, R., Chaufaux, J., Pham-Delegue, M.H. (2005) Effects of Cry1Ab protoxin, deltamethrin and imidacloprid on the foraging activity and the learning performances of the honeybee Apis mellifera, a comparative approach. Apidologie 36, 601–611CrossRefGoogle Scholar
  164. Ramirez-Romero, R., Desneux, N., Decourtye, A., Chaffiol, A., Pham-Delègue, M.H. (2008) Does Cry1Ab protein affect learning performances of the honey bee Apis mellifera L. (Hymenoptera, Apidae)? Ecotoxicol. Environ. Saf. 70, 327–333PubMedCrossRefGoogle Scholar
  165. Reinhard, J., Srinivasan, M.V., Zhang, S.W. (2004) Scent-triggered navigation in honeybees. Nature 427, 411–411CrossRefGoogle Scholar
  166. Reynolds, D.R., Riley, J.R. (2002) Remote-sensing, telemetric and computer-based technologies for investigating insect movement: a survey of existing and potential techniques. Comput. Elect. Agric. 35, 271–307CrossRefGoogle Scholar
  167. Rieth, J.P., Levin, M.D. (1988) The repellent effect of two pyrethroid insecticides on the honey bee. Physiol. Entomol. 13, 213–218CrossRefGoogle Scholar
  168. Rieth, J.P., Levin, M.D. (1989) Repellency of two phenylacetate-ester pyrethroids to the honeybee. J. Apic. Res. 28, 175–179Google Scholar
  169. Riley, J.R., Smith, A.D., Reynolds, D.R., Edwards, A.S., Osborne, J.L., Williams, I.H., Carreck, N.L., Poppy, G.M. (1996) Tracking bees with harmonic radar. Nature 379, 29–30CrossRefGoogle Scholar
  170. Riley, J.R., Greggers, U., Smith, A.D., Reynolds, D.R., Menzel, R. (2005) The flight paths of honeybees recruited by the waggle dance. Nature 435, 205–207PubMedCrossRefGoogle Scholar
  171. Riviere, J.L. (1983) Prochloraz, a potent inducer of the microsomal cytochrome-P-450 system. Pestic. Biochem. Physiol. 19, 44–52CrossRefGoogle Scholar
  172. Ruzo, L.O., Holmstead, R.L., Casida, J.E. (1977) Pyrethroid photochemistry—Decamethrin. J. Agric. Food Chem. 25, 1385–1394CrossRefGoogle Scholar
  173. Ruzo, L.O., Gaughan, L.C., Casida, J.E. (1980) Pyrethroid photochemistry—S-Bioallethrin. J. Agric. Food Chem. 28, 246–249CrossRefGoogle Scholar
  174. Ruzzin, J., Petersen, R., Meugnier, E., Madsen, L., Lock, E.-J., Lillefosse, H., Ma, T., Pesenti, S., Sonne, S.B., Marstrand, T.T., Malde, M.K., Du, Z.-Y., Chavey, C., Fajas, L., Lundebye, A.-K., Brand, C.L., Vidal, H., Kristiansen, K., Frøyland, L. (2009) Persistent Organic Pollutant Exposure Leads to Insulin Resistance Syndrome. Environ. Health Perspect. 118, 465–471PubMedCrossRefGoogle Scholar
  175. Sadler, N., Nieh, J.C. (2011) Honey bee forager thoracic temperature inside the nest is tuned to broad-scale differences in recruitment motivation. J. Exp. Biol. 214, 469–475PubMedCrossRefGoogle Scholar
  176. Sanahuja, G., Banakar, R., Twyman, R.M., Capell, T., Christou, P. (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol. J. 9, 283–300PubMedCrossRefGoogle Scholar
  177. Sattelle, D.B., Yamamoto, D. (1988) Molecular targets of pyrethroid insecticides. Adv. Insect Physiol. 20, 147–213CrossRefGoogle Scholar
  178. Scharf, M.E., Siegfried, B.D. (1999) Toxicity and neurophysiological effects of fipronil and fipronil sulfone on the western corn rootworm (Coleoptera: Chrysomelidae). Arch. Insect Biochem. Physiol. 40, 150–156CrossRefGoogle Scholar
  179. Schmaranzer, S., Stabentheiner, A., Heran, H. (1987) Effect of Roxion-S (dimethoate) on the body temperature of the honey bee. In: Eder, J., Rembold, H. (eds.) Chemical Biology of Social Insects, p. 241. Verlag, MünchenGoogle Scholar
  180. Schneider, C.W., Tautz, J., Grünewald, B., Fuchs, S. (2012) RFID Tracking of Sublethal Effects of Two Neonicotinoid Insecticides on the Foraging Behavior of Apis mellifera. PLoS One 7, e30023PubMedCrossRefGoogle Scholar
  181. Schricker, B. (1974) Der einfluss subletaler dosen von parathion (E 605) auf das zeitgedächtnis der honigbiene. Apidologie 5, 385–398CrossRefGoogle Scholar
  182. Schricker, B., Stephen, W.P. (1970) The effect of sublethal doses of parathion on honeybee behaviour. I. Oral administration and the communication dance. J. Apic. Res. 9, 141–153Google Scholar
  183. Schroeder, M.E., Flattum, R.F. (1984) The mode of action and neurotoxic properties of the nitromethylene heterocycle insecticides. Pestic. Biochem. Physiol. 22, 148–160CrossRefGoogle Scholar
  184. Seifert, J., Stollberg, J. (2005) Antagonism of a neonicotinoid insecticide imidacloprid at neuromuscular receptors. Environ. Toxicol. Pharmacol. 20, 18–21PubMedCrossRefGoogle Scholar
  185. Shires, S.W., Leblanc, J., Debray, P., Forbes, S., Louveaux, J. (1984a) Field experiments on the effects of a new pyrethroid insecticide WL-85871 on bees foraging artificial aphid honeydew on winter-wheat. Pestic. Sci. 15, 543–552CrossRefGoogle Scholar
  186. Shires, S.W., Murray, A., Debray, P., Leblanc, J. (1984b) The effects of a new pyrethroid insecticide WL-85871 on foraging honey bees (Apis-mellifera L). Pestic. Sci. 15, 491–499CrossRefGoogle Scholar
  187. Sidiropoulou, E., Sachana, M., Flaskos, J., Harris, W., Hargreaves, A.J., Woldehiwet, Z. (2011) Fipronil interferes with the differentiation of mouse N2a neuroblastoma cells. Toxicol. Lett. 201, 86–91PubMedCrossRefGoogle Scholar
  188. Snegaroff, J., Bach, J. (1989) Effects of the fungicide prochloraz on xenobiotic metabolism in rainbow-trout—Inhibition in-vitro and time course of induction in-vivo. Xenobiotica 19, 255–267PubMedCrossRefGoogle Scholar
  189. Soderlund, D.M., Bloomquist, J.R. (1989) Neurotoxic actions of pyrethroid insecticides. Annu. Rev. Entomol. 34, 77–96PubMedCrossRefGoogle Scholar
  190. Soderlund, D.M., Clark, J.M., Sheets, L.P., Mullin, L.S., Piccirillo, V.J., Sargent, D., Stevens, J.T., Weiner, M.L. (2002) Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology 171, 3–59PubMedCrossRefGoogle Scholar
  191. Solomon, M.G., Hooker, K.J.M. (1989) Chemical reppelents for reducing pesticide hazard to honeybees in apple orchards. J. Apic. Res. 28, 223–227Google Scholar
  192. Southwick, E.E. (1982) Metabolic energy of intact honey bee colonies. Comp. Biochem. Physiol. A 71, 277–281CrossRefGoogle Scholar
  193. Southwick, E.E. (1983) The honey bee cluster as a homeothermic superorganism. Comp. Biochem. Physiol. A 75, 641–645CrossRefGoogle Scholar
  194. Southwick, E.E. (1987) Cooperative metabolism in honey bees: An alternative to antifreeze and hibernation. J. Therm. Biol. 12, 155–158CrossRefGoogle Scholar
  195. Southwick, E.E., Heldmaier, G. (1987) Temperature control in honey bee colonies. Bioscience 37, 395–399CrossRefGoogle Scholar
  196. Srinivasan, M.V. (2011) Honeybees as a Model for the Study of Visually Guided Flight, Navigation, and Biologically Inspired Robotics. Physiol. Rev. 91, 413–460PubMedCrossRefGoogle Scholar
  197. Srinivasan, M.V., Zhang, S.W., Lehrer, M., Collett, T.S. (1996) Honeybee navigation en route to the goal: Visual flight control and odometry. J. Exp. Biol. 199, 237–244PubMedGoogle Scholar
  198. Stabentheiner, A. (2001) Thermoregulation of dancing bees: thoracic temperature of pollen and nectar foragers in relation to profitability of foraging and colony need. J. Insect Physiol. 47, 385–392PubMedCrossRefGoogle Scholar
  199. Stabentheiner, A., Vollmann, J., Kovac, H., Crailsheim, K. (2003) Oxygen consumption and body temperature of active and resting honeybees. J. Insect Physiol. 49, 881–889PubMedCrossRefGoogle Scholar
  200. Stelzer, R.J., Stanewsky, R., Chittka, L. (2010) Circadian foraging rhythms of bumblebees monitored by radio-frequency identification. J. Biol. Rhythms 25, 257–267CrossRefGoogle Scholar
  201. Stephen, W.P., Schricker, B. (1970) The effect of sublethal doses of parathion. II. Site of parathion activity, and signal integration. J. Apic. Res. 9, 155–164Google Scholar
  202. Streit, S., Bock, F., Pirk, C.W.W., Tautz, J. (2003) Automatic life-long monitoring of individual insect behaviour now possible. Zoology 106, 169–171PubMedCrossRefGoogle Scholar
  203. Suchail, S., Guez, D., Belzunces, L.P. (2001) Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environ. Toxicol. Chem. 20, 2482–2486PubMedGoogle Scholar
  204. Suchail, S., De Sousa, G., Rahmani, R., Belzunces, L.P. (2004) In vivo distribution and metabolisation of [14C]-imidacloprid in different compartments of Apis mellifera L. Pest Manag. Sci. 60:1056–1062Google Scholar
  205. Takahashi, N., Mikami, N., Yamada, H., Miyamoto, J. (1985) Photodegradation of the pyrethroid insecticide fenpropathrin in water, on soil and on plant foliage. Pestic. Sci. 16, 119–131CrossRefGoogle Scholar
  206. Tank, J.L., Rosi-Marshall, E.J., Royer, T.V., Whiles, M.R., Griffiths, N.A., Frauendorf, T.C., Treering, D.J. (2010) Occurrence of maize detritus and a transgenic insecticidal protein (Cry1Ab) within the stream network of an agricultural landscape. Proc. Nat. Acad. Sci. USA 107, 17645–17650PubMedCrossRefGoogle Scholar
  207. Taylor, K.S., Waller, G.D., Crowder, L.A. (1987) Impairment of a classical conditioned response of the honey bee (Apis mellifera) by sublethal doses of synthetic pyrethroid insecticides. Apidologie 18, 243–252CrossRefGoogle Scholar
  208. Thany, S.H., Gauthier, M. (2005) Nicotine injected into the antennal lobes induces a rapid modulation of sucrose threshold and improves short-term memory in the honeybee Apis mellifera. Brain Res. 1039, 216–219PubMedCrossRefGoogle Scholar
  209. Thany, S.H., Lenaers, G., Crozatier, M., Armengaud, C., Gauthier, M. (2003) Identification and localization of the nicotinic acetylcholine receptor alpha3 mRNA in the brain of the honeybee, Apis mellifera. Insect Mol. Biol. 12, 255–262PubMedCrossRefGoogle Scholar
  210. Thompson, H., Wilkins, S. (2003) Assessment of the synergy and repellency of pyrethroid/fungicide mixtures. Bull. Insectol. 56, 131–134Google Scholar
  211. Tian, Y.C., Qin, X.F., Xu, B.Y., Li, T.Y., Fang, R.X., Mang, K.Q., Li, W.G., Fu, W.J., Li, Y.P., Zhang, S.F. (1991) Insect resistance of transgenic tobacco plants expressing delta-endotoxin gene of Bacillus thuringiensis. Chin J. Biotechnol. 7, 1–13PubMedGoogle Scholar
  212. Tomasi, T.E., Ashcraft, J., Britzke, E. (2001) Effects of fungicides on thyroid function, metabolism, and thermoregulation in cotton rats. Environ. Toxicol. Chem. 20, 1709–1715PubMedCrossRefGoogle Scholar
  213. Tomizawa, M., Casida, J.E. (2005) Neonicotinoid insecticide toxicology: Mechanisms of selective action, Annu. Rev. Pharmacol. Toxicol. 45, 247–268Google Scholar
  214. Ueda, K., Gaughan, L.C., Casida, J.E. (1974) Photodecomposition of resmethrin and related pyrethroids. J. Agric. Food Chem. 22, 212–220PubMedCrossRefGoogle Scholar
  215. UIPP (2011) La nature, une richesse à cultiver. Rapport d’activité 2010/2011, 29 ppGoogle Scholar
  216. Vaeck, M., Reynaerts, A., Hofte, H., Vanderbruggen, H., Jansens, S., Leemans, J. (1987) Insect resistance in transgenic plants expressing Bacillus thuringiensis toxin genes. Anais da Soc. Entomol. Brasil 16, 427–435Google Scholar
  217. Vaidya, D.N., Kumar, S., Mehta, P.K. (1996) Repellency of some insecticides to Apis mellifera F. foragers on treated bloom of sarson, Brassica campestris L. var. brown sarson. Ann. Biology (Ludhiana) 12, 134–138Google Scholar
  218. Vandame, R., Belzunces, L.P. (1998) Joint actions of deltamethrin and azole fungicides on honey bee thermoregulation. Neurosci. Lett. 251, 57–60PubMedCrossRefGoogle Scholar
  219. Vandame, R., Meled, M., Colin, M.-E., Belzunces, L.P. (1995) Alteration of the homing-flight in the honey bee Apis mellifera L. Exposed to sublethal dose of deltamethrin. Environ. Toxicol. Chem. 14, 855–860CrossRefGoogle Scholar
  220. Waller, G.D., Barker, R.J., Martin, J.H. (1979) Effects of dimethoate on honey bee foraging. Chemosphere 8, 461–463Google Scholar
  221. Wang, C.M., Narahashi, T., Scuka, M. (1972) Mechanism of negative temperature coefficient of nerve blocking action of allethrin. J. Pharmacol. Exp. Ther. 182, 442–453PubMedGoogle Scholar
  222. Wei, J.-Z., Hale, K., Carta, L., Platzer, E., Wong, C., Fang, S.-C., Aroian, R.V. (2003) Bacillus thuringiensis crystal proteins that target nematodes. Proc. Nat. Acad. Sci. USA 100, 2760–2765PubMedCrossRefGoogle Scholar
  223. Wolstenholme, A.J., Horoszok, L., Raymond, V., Sattelle, D.B. (2000) GLC-3: A novel fipronil and BIDN-sensitive, but picrotoxinin-insensitive, L-glutamate-gated chloride channel subunit from Caenorhabditis elegans. Eur. J. Neurosci. 12, 398–398Google Scholar
  224. Wraight, C.L., Zangerl, A.R., Carroll, M.J., Berenbaum, M.R. (2000) Absence of toxicity of Bacillus thuringiensis pollen to black swallowtails under field conditions. Proc. Nat. Acad. Sci. USA 97, 7700–7703PubMedCrossRefGoogle Scholar
  225. Wüstenberg, D.G., Grünewald, B. (2004) Pharmacology of the neuronal nicotinic acetylcholine receptor of cultured Kenyon cells of the honeybee, Apis mellifera. J. Comp. Physiol. A 190, 807–821CrossRefGoogle Scholar
  226. Yang, E.C., Chuang, Y.C., Chen, Y.L., Chang, L.H. (2008) Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 101, 1743–1748PubMedCrossRefGoogle Scholar
  227. Yousef, M.I. (2010) Vitamin E modulates reproductive toxicity of pyrethroid lambda-cyhalothrin in male rabbits. Food Chem. Toxicol. 48, 1152–1159PubMedCrossRefGoogle Scholar
  228. Zhang, S.W., Lehrer, M., Srinivasan, M.V. (1999) Honeybee memory: navigation by associative grouping and recall of visual stimuli. Neurobiol. Learn. Mem. 72, 180–201PubMedCrossRefGoogle Scholar
  229. Zhang, H., Wang, H., Ji, Y.-L., Zhang, Y., Yu, T., Ning, H., Zhang, C., Zhao, X.-F., Wang, Q., Liu, P., Xu, D.-X. (2010a) Maternal fenvalerate exposure during pregnancy persistently impairs testicular development and spermatogenesis in male offspring. Food Chem. Toxicol. 48, 1160–1169PubMedCrossRefGoogle Scholar
  230. Zhang, H., Wang, H., Wang, Q., Zhao, X.-F., Liu, P., Ji, Y.-L., Ning, H., Yu, T., Zhang, C., Zhang, Y., Meng, X.-H., Xu, D.-X. (2010b) Pubertal and early adult exposure to fenvalerate disrupts steroidogenesis and spermatogenesis in mice at adulthood. J. Appl. Toxicol. 30, 369–377PubMedGoogle Scholar
  231. Zhao, X., Salgado, V.L. (2010) The role of GABA and glutamate receptors in susceptibility and resistance to chloride channel blocker insecticides. Pestic. Biochem. Physiol. 97, 153–160CrossRefGoogle Scholar
  232. Zhao, X.L., Salgado, V.L., Yeh, J.Z., Narahashi, T. (2003) Differential actions of fipronil and dieldrin insecticides on GABA-gated chloride channels in cockroach neurons. J. Pharmacol. Exp. Ther. 306, 914–924PubMedCrossRefGoogle Scholar
  233. Zhao, X.L., Yeh, J.Z., Salgado, V.L., Narahashi, T. (2004) Fipronil is a potent open channel blocker of glutamate-activated chloride channels in cockroach neurons. J. Pharmacol. Exp. Ther. 310, 192–201PubMedCrossRefGoogle Scholar
  234. Zhao, X., Yeh, J.Z., Salgado, V.L., Narahashi, T. (2005) Sulfone metabolite of fipronil blocks γ-aminobutyric acid- and glutamate-activated chloride channels in mammalian and insect neurons. J. Pharmacol. Exp. Ther. 314, 363–373PubMedCrossRefGoogle Scholar
  235. Zhao, Q., Li, Y., Xiong, L., Wang, Q. (2010) Design, Synthesis and Insecticidal Activity of Novel Phenylpyrazoles Containing a 2,2,2-Trichloro-1-alkoxyethyl Moiety. J. Agric. Food Chem. 58, 4992–4998PubMedCrossRefGoogle Scholar
  236. Zhao, X.-F., Wang, Q., Ji, Y.-L., Wang, H., Liu, P., Zhang, C., Zhang, Y., Xu, D.-X. (2011) Fenvalerate induces germ cell apoptosis in mouse testes through the Fas/FasL signaling pathway. Arch. Toxicol. 85, 1101–1108Google Scholar
  237. Zhou, T., Zhou, W., Wang, Q., Dai, P.-L., Liu, F., Zhang, Y.-L., Sun, J.-H. (2011) Effects of pyrethroids on neuronal excitability of adult honeybees Apis mellifera. Pestic. Biochem. Physiol. 100, 35–40CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag, France 2012

Authors and Affiliations

  • Luc P. Belzunces
    • 1
  • Sylvie Tchamitchian
    • 1
  • Jean-Luc Brunet
    • 1
  1. 1.INRA, UR 406 Abeilles & Environnement, Laboratoire de Toxicologie EnvironnementaleAvignonFrance

Personalised recommendations