, Volume 43, Issue 3, pp 269–291 | Cite as

Dynamics of sensory processing in the dual olfactory pathway of the honeybee

Review article


Insects identify and evaluate behaviorally relevant odorants in complex natural scenes where odor concentrations and mixture composition can change rapidly. This requires fast and reliable information processing in the olfactory system. Here, we review recent experimental findings and theoretical hypotheses on olfactory processing in the honeybee with a focus on its temporal dynamics. Specifically we address odor response characteristics of antennal lobe interneurons and projection neurons, local processing of elemental odors and odor blends, the functional role of the dual olfactory pathway in the honeybee, population coding in uniglomerular projection neurons, and a novel model for sparse and reliable coding in projection neurons and mushroom body Kenyon cells. It is concluded that the olfactory system of the honeybee implements a fast and reliable coding scheme optimized for processing dynamic input within the behaviorally relevant temporal range.


antennal lobe sparse code latency code odor trace olfaction 



I thank Sabine Krofczik and Randolf Menzel for providing me with the electrophysiological data that was reproduced in Figures 2, 3, 4, and 5 and Farzad Farkhooi for carrying out the simulations shown in Figure 7. I am grateful to Jürgen Rybak for the 3D visualization of neurons in the Honeybee Standard Brain atlas (Figure 1) and for his helpful comments on an earlier version of this manuscript. I thank Randolf Menzel, Anneke Meyer, Paul Szyszka and Michael Schmuker for valuable discussions and Chris Häusler for the language check. We acknowledge generous funding from the German Federal Ministry of Education and Research to the Bernstein Focus Learning and Memory—Insect inspired robots (01GQ0941) and to the Bernstein Center for Computational Neuroscience Berlin (01GQ1001D).

Supplementary material

13592_2012_131_MOESM1_ESM.pdf (1.4 mb)
ESM 1 (PDF 1383 kb)


  1. Abel, R., Rybak, J., Menzel, R. (2001) Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera. J. Comp. Neurol. 437, 363–383PubMedGoogle Scholar
  2. Abraham, N.M., Spors, H., Carleton, A., Margrie, T.W., Kuner, T., Schaefer, A.T. (2004) Maintaining accuracy at the expense of speed: stimulus similarity defines odor discrimination time in mice. Neuron 44, 865–876PubMedGoogle Scholar
  3. Assisi, C., Stopfer, M., Laurent, G., Bazhenov, M. (2007) Adaptive regulation of sparseness by feedforward inhibition. Nat. Neurosci. 10, 1176–84PubMedGoogle Scholar
  4. Belmabrouk, H., Nowotny, T., Rospars, J.-P., Martinez, D. (2011) Interaction of cellular and network mechanisms for efficient pheromone coding in moths. PNAS 108, 19790–19795PubMedGoogle Scholar
  5. Benda, J., Herz, A.V. (2003) A universal model for spike-frequency adaptation. Neural Comput. 15, 2523–64PubMedGoogle Scholar
  6. Benda, J., Hennig, R.M. (2008) Spike-frequency adaptation generates intensity invariance in a primary auditory interneuron. J. Comput. Neurosci. 24, 113–36PubMedGoogle Scholar
  7. Benda, J., Maler, L., Longtin, A. (2010) Linear versus nonlinear signal transmission in neuron models with adaptation currents or dynamic thresholds. J. Neurophysiol. 104, 2806–20PubMedGoogle Scholar
  8. Beyeler, M., Stefanini, F., Proske, H., Galizia, G., Chicca, E. (2010) Exploring olfactory sensory networks: simulations and hardware emulation. IEEE Biomedical Circuits and Systems Conference (BioCAS) 2010, 270–273Google Scholar
  9. Bhandawat, V., Olsen, S., Gouwens, N., Schlief, M., Wilson, R. (2007) Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations. Nat. Neurosci. 10, 1474–1482PubMedGoogle Scholar
  10. Blumhagen, F., Zhu, P., Shum, J., Schärer, Y.P.Z., Yaksi, E., Deisseroth, K., Friedrich, R.W. (2011) Neuronal filtering of multiplexed odour representations. Nature 479, 493–500PubMedGoogle Scholar
  11. Brandstätter, A.S., Kleineidam, C. (2011) Distributed representation of social odors indicates parallel processing in the antennal lobe of ants. J. Neurophysiol. 106, 2437–2449Google Scholar
  12. Brill, M. F., Reus, I., Rosenbaum, T., Kleineidam, C. J., Rössler, W. (2011). Simultaneous recordings from multiple projection neurons in the dual olfactory pathway of the honeybee. Proceedings of the 9th Göttingen Meeting of the German Neuroscience Society: T19-31A.Google Scholar
  13. Broome, B.M., Jayaraman, V., Laurent, G. (2006) Encoding and decoding of overlapping odor sequences. Neuron 51(4), 467–82PubMedGoogle Scholar
  14. de Bruyne, M., Clyne, P.J., Carlson, J.R. (1999) Odor coding in a model olfactory organ: the Drosophila maxillary palp. J. Neurosci. 19, 4520–4532PubMedGoogle Scholar
  15. Chacron, M.J., Lindner, B., Longtin, A. (2004) Noise shaping by interval correlations increases information transfer. PRL. doi: 10.1103/PhysRevLett.92.080601
  16. Chandra, S., Smith, B.H. (1998) An analysis of synthetic processing of odor mixtures in the honeybee. J. Exp. Biol. 201, 3113–3121PubMedGoogle Scholar
  17. Chase, S.M., Young, E.D. (2007) First-spike latency information in single neurons increases when referenced to population onset. PNAS 104, 5175–80PubMedGoogle Scholar
  18. Daly, K.C., Wright, G.A., Smith, B.H. (2004) Molecular features of odorants systematically influence slow temporal responses across clusters of coordinated antennal lobe units in the moth Manduca sexta. J. Neurophysiol. 92, 236–54PubMedGoogle Scholar
  19. Daly, K.C., Galán, R.F., Peters, O.J., Staudacher, E.M. (2011) Detailed characterization of local field potential oscillations and their relationship to spike timing in the antennal lobe of the moth Manduca sexta. Front. Neuroeng. 4, 12. doi: 10.3389/fneng.2011.00012 PubMedGoogle Scholar
  20. Davison, I., Katz, L. (2007) Sparse and selective odor coding by mitral/tufted neurons in the main olfactory bulb. J. Neurosci. 27, 2091–2101PubMedGoogle Scholar
  21. Deisig, N., Lachnit, H., Giurfa, M., Hellstern, F. (2001) Configural olfactory learning in honeybees: negative and positive patterning discrimination. Learn. Mem. 8(2), 70–78PubMedGoogle Scholar
  22. Deisig, N., Lachnit, H., Giurfa, M. (2002) The effect of similarity between elemental stimuli and compounds in olfactory patterning discriminations. Learn. Mem. 9(3), 112–121PubMedGoogle Scholar
  23. Deisig, N., Lachnit, H., Sandoz, J.C., Lober, K., Giurfa, M. (2003) A modified version of the unique cue theory accounts for olfactory compound processing in honeybees. Learn. Mem. 10(3), 199–208PubMedGoogle Scholar
  24. Deisig, N., Giurfa, M., Lachnit, H., Sandoz, J. (2006) Neural representation of olfactory mixtures in the honeybee antennal lobe. Eur. J. Neurosci. 24, 1161–1174PubMedGoogle Scholar
  25. Deisig N, Giurfa M, Sandoz JC (2010) Antennal lobe processing increases separability of odor mixture representations in the honeybee. J. Neurophysiol. 103:2185–2194Google Scholar
  26. Demmer, H., Kloppenburg, P. (2009) Intrinsic membrane properties and inhibitory synaptic input of kenyon cells as mechanisms for sparse coding? J Neurophysiol. 102(3), 1538–50PubMedGoogle Scholar
  27. Esslen, J., Kaissling, K. (1976) Zahl und Verteilung antennaler Sensillen bei der Honigbiene Apis mellifera L. Zoomorphologie 83, 227–251Google Scholar
  28. Farkhooi, F., Strube, M., Nawrot, M.P. (2009a) Serial correlation in neural spike trains: experimental evidence, stochastic modelling, and single neuron variability. Phys. Rev. E 79, 021905Google Scholar
  29. Farkhooi, F., Müller, E., Nawrot, M.P. (2009b) Sequential sparsing by successive adapting neural populations. BMC Neurosci. 10(I), O10. doi: 10.1186/1471-2202-10-S1-O10 Google Scholar
  30. Farkhooi, F., Müller, E., Nawrot, M.P. (2011) Adaptation reduces variability of the neuronal population code. Phys. Rev. E 83, 050905Google Scholar
  31. Farkhooi F, Muller E, Nawrot MP (2010) Sequential sparsening by successive adaptation in neural populations. arXiv:1007.2345v1Google Scholar
  32. Farkhooi F (2011) Emergent properties of spike-frequency adaptation in neuronal systems: non-renewal statistics, variability reduction and sparsening. Ph.D. thesis, Freie Universität Berlin.
  33. Felsen, G., Dan, Y. (2004) A natural approach to studying vision. Nat. Neurosci. 8, 1643–1646Google Scholar
  34. Fernandez, P.C., Locatelli, F.F., Person-Rennell, N., Deleo, G., Smith, B.H. (2009) Associative conditioning tunes transient dynamics of early olfactory processing. J. Neurosci. 29(33), 10191–202PubMedGoogle Scholar
  35. Friedrich, R.W., Laurent, G. (2001) Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science 291, 889–94PubMedGoogle Scholar
  36. Fujiwara, T., Kazawa, T., Haupt, S.S., Kanzaki, R. (2009) Ca2+ imaging of identifiable neurons labeled by electroporation in insect brains. Chem. Senses 20, 1061–1065Google Scholar
  37. Fonta, C., Sun, X., Masson, C. (1993) Morphology and spatial distribution of bee antennal lobe interneurones responsive to odours. Chem. Senses 18, 101–119Google Scholar
  38. Galán, R.F., Weidert, M., Menzel, R., Herz, A.V., Galizia, C.G. (2006) Sensory memory for odors is encoded in spontaneous correlated activity between olfactory glomeruli. Neural Comput. 18, 10–25PubMedGoogle Scholar
  39. Galili, D.S., Lüdke, A., Galizia, C.G., Szyszka, P., Tanimoto, H. (2011) Olfactory trace conditioning in Drosophila. J. Neurosci. 31, 7240–7248PubMedGoogle Scholar
  40. Galizia, C., Kimmerle, B. (2004) Physiological and morphological characterization of honeybee olfactory neurons combining electrophysiology, calcium imaging and confocal microscopy. J. Comp. Physiol. A 190, 21–38Google Scholar
  41. Galizia, C.G., Sachse, S., Rappert, A., Menzel, R. (1999) The glomerular code for odor representation is species specific in the honeybee Apis mellifera. Nat. Neurosci. 2, 473–8PubMedGoogle Scholar
  42. Galizia, C., Menzel, R. (2000) Odour perception in honeybees: coding information in glomerular patterns. Curr. Opin. Neurobiol. 10, 504–510PubMedGoogle Scholar
  43. Galizia, C.G., Rössler, W. (2010) Parallel olfactory systems in insects: anatomy and function. Annu. Rev. Entomol. 55, 399–420PubMedGoogle Scholar
  44. Ganeshina, O., Menzel, R. (2001) GABA-immunoreactive neurons in the mushroom bodies of the honeybee: an electron microscopic study. J. Comp. Neurol. 437(3), 335–349PubMedGoogle Scholar
  45. Geffen, M.N., Broome, B.M., Laurent, G., Meister, M. (2009) Neural encoding of rapidly fluctuating odors. Neuron 61, 570–86PubMedGoogle Scholar
  46. Grünewald, B. (1993) Differential expression of voltage-sensitive K+ and Ca2+ currents in neurons of the honeybee olfactory pathway. J. Exp. Biol. 206, 117–129Google Scholar
  47. Guerrieri, F., Schubert, M., Sandoz, J., Giurfa, M. (2005) Perceptual and neural olfactory similarity in honeybees. PLoS Biol. 3, e60PubMedGoogle Scholar
  48. Haase, A., Rigosi, E., Trona, F., Anfora, G., Vallortigara, G., Antolini, R., Vinegoni, C. (2010) In-vivo two-photon imaging of the honey bee antennal lobe. Biomed. Opt. Express 2, 131–8PubMedGoogle Scholar
  49. Hallem, E.A., Carlson, J.R. (2006) Coding of odors by a receptor repertoire. Cell 125, 143–60PubMedGoogle Scholar
  50. Hansson, B.S., Stensmyr, M.C. (2011) Evolution of insect olfaction. Neuron 72, 698–711PubMedGoogle Scholar
  51. Häusler C, Nawrot MP, Schmuker M (2011) A spiking neuron classifier network with a deep architecture inspired by the olfactory system of the honeybee. Proceedings of the 5th International IEEE EMBS Conference on Neural Engineering, Cancun, Mexico, April 27–May 1, 2011: 198–202Google Scholar
  52. Hebb, D.O. (1949) The organisation of behavior. Wiley, New YorkGoogle Scholar
  53. Holt, G.R., Softky, W.R., Koch, C., Douglas, R.J. (1996) Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. J. Neurophysiol. 75, 1806–1814PubMedGoogle Scholar
  54. Honegger, K.S., Campbell, R.A.A., Turner, G.C. (2011) Cellular-resolution population imaging reveals robust sparse coding in the Drosophila mushroom body. J. Neurosci. 31, 11772–11785PubMedGoogle Scholar
  55. Ito, I., Ong, R.C., Raman, B., Stopfer, M. (2008) Sparse odor representation and olfactory learning. Nat. Neurosci. 11(10), 1177–84PubMedGoogle Scholar
  56. Jarriault, D., Gadenne, C., Lucas, P., Rospars, J.-P., Anton, S. (2010) Transformation of the sex pheromone signal in the noctuid moth agrotis ipsilon: from peripheral input to antennal lobe output. Chem. Senses 35, 705–715PubMedGoogle Scholar
  57. Joerges, J., Küttner, A., Galizia, C.G., Menzel, R. (1997) Representation of odours and odour mixtures visualized in the honeybee brain. Nature 387, 285–288Google Scholar
  58. Jortner, R.A., Farivar, S.S., Laurent, G. (2007) A simple connectivity scheme for sparse coding in an olfactory system. J. Neurosci. 27, 1659–69PubMedGoogle Scholar
  59. Junek, S., Kludt, E., Wolf, F., Schild, D. (2010) Olfactory coding with patterns of response latencies. Neuron 67, 872–884PubMedGoogle Scholar
  60. Kazama, H., Wilson, R.I. (2008) Homeostatic matching and nonlinear amplification at identified central synapses. Neuron 58(3), 401–13PubMedGoogle Scholar
  61. Kazama, H., Wilson, R.I. (2009) Origins of correlated activity in an olfactory circuit. Nat. Neurosci. 12, 1136–44PubMedGoogle Scholar
  62. Kirschner, S., Kleineidam, C., Zube, C., Rybak, J., Grünewald, B., Roessler, W. (2006) Dual olfactory pathway in the honeybee, Apis mellifera. J. Comp. Neurol. 499, 933–952PubMedGoogle Scholar
  63. Krofczik, S., Menzel, R., Nawrot, M.P. (2008) Rapid odor processing in the honeybee antennal lobe network. Front. Comput. Neurosci. 2, 9PubMedGoogle Scholar
  64. Kuebler, L.S., Olsson, S.B., Weniger, R., Hansson, B.S. (2011) Neuronal processing of complex mixtures establishes a unique odor representation in the moth antennal lobe. Front. Neural Circuits 5, 7PubMedGoogle Scholar
  65. Laurent, G., Davidowitz, H. (1994) Encoding of olfactory information with oscillating neural assemblies. Science 265, 1872–5PubMedGoogle Scholar
  66. Linster, C., Smith, B.H. (1997) A computational model of the response of honey bee antennal lobe circuitry to odor mixtures: overshadowing, blocking and unblocking can arise from lateral inhibition. Behav. Brain Res. 87, 1–14PubMedGoogle Scholar
  67. Linster, C., Sachse, S., Galizia, C.G. (2005) Computational modeling suggests that response properties rather than spatial position determine connectivity between olfactory glomeruli. J. Neurophys. 93, 3410–3417Google Scholar
  68. Lundstrom, B.N., Higgs, M.H., Spain, W.J., Fairhall, A.L. (2008) Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11, 1335–1342PubMedGoogle Scholar
  69. Martin, J.P., Beyerlein, A., Dacks, A.M., Reisenman, C.E., Riffell, J.A., Lei, H., Hildebrand, J.G. (2011) The neurobiology of insect olfaction: sensory processing in a comparative context. Prog. Neurobiol. 95, 427–447PubMedGoogle Scholar
  70. Mazor, O., Laurent, G. (2005) Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48, 661–673PubMedGoogle Scholar
  71. Menzel, R., Bitterman, M.E. (1983) Learning by honey bees in an unnatural situation. In: Huber, F., Markl, H. (eds.) Neuroethology and Behavioral Physiology, pp. 206–215. Springer, BerlinGoogle Scholar
  72. Mercer, A.R., Hildebrand, J.G. (2002) Developmental changes in the electrophysiological properties and response characteristics of Manduca antennal-lobe neurons. J. Neurophysiol. 87, 2650–2663PubMedGoogle Scholar
  73. Meyer A (2011) Characterisation of local interneurons in the antennal lobe of the honeybee. Dissertation, University of Konstanz, Germany.
  74. Meyer, A., Galizia, C.G. (2012) Elemental and configural olfactory-coding by antennal lobe neurons of the honey bee (Apis mellifera). J. Comp. Physiol. A 198(2), 159–171Google Scholar
  75. Meyer, A., Galizia, C., Nawrot, M.P. (2011) A spiking point of view—is it possible to predict a neurons morphology from its electrophysiological activity? Front. Comput. Neurosci.. doi: 10.3389/conf.fncom.2011.53.0015. Conference Abstract
  76. Müller, E., Buesing, L., Schemmel, J., Meier, K. (2007) Spike-frequency adapting neural ensembles: beyond mean adaptation and renewal theories. Neural Comput. 19(11), 2958–3010PubMedGoogle Scholar
  77. Müller, D., Abel, R., Brandt, R., Zoeckler, M., Menzel, R. (2002) Differential parallel processing of olfactory information in the honeybee, Apis mellifera L. J. Comp. Physiol. A 188, 359–370Google Scholar
  78. Nagel, K.I., Wilson, R.I. (2010) Biophysical mechanisms underlying olfactory receptor neuron dynamics. Nat. Neurosci. 14, 208–218Google Scholar
  79. Namiki, S., Kanzaki, R. (2008) Reconstructing the population activity of olfactory output neurons that innervate identifiable processing units. Front. Neural Circuits 2, 1PubMedGoogle Scholar
  80. Namiki, S., Haupt, S.S., Kazawa, T., Takashima, A., Ikeno, H., Kanzaki, R. (2009) Reconstruction of virtual neural circuits in an insect brain. Front. Neurosci. 3(2), 206–13PubMedGoogle Scholar
  81. Nawrot, M.P. (2010) Analysis and interpretation of interval and count variability in neural spike trains. In: Grün, S., Rotter, S. (eds.) Analysis of Parallel Spike Trains. Springer, New YorkGoogle Scholar
  82. Nawrot MP, Krofczik S, Farkhooi F, Menzel R (2010) Fast dynamics of odor rate coding in the insect antennal lobe. arXiv:1101.0271v1Google Scholar
  83. Okada, R., Rybak, J., Manz, G., Menzel, R. (2007) Learning-related plasticity in PE1 and other mushroom body-extrinsic neurons in the honeybee brain. J. Neurosci. 27, 11736–47PubMedGoogle Scholar
  84. Olsen, S.R., Bhandawat, V., Wilson, R.I. (2007) Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe. Neuron 54, 89–103PubMedGoogle Scholar
  85. Pamir, E., Chakroborty, N.K., Stollhoff, N., Gehring, K.B., Antemann, V., Morgenstern, L., Felsenberg, J., Eisenhardt, D., Menzel, R., Nawrot, M.P. (2011) Average group behavior does not represent individual behavior in classical conditioning of the honeybee. Learn. Mem. 18, 733–741PubMedGoogle Scholar
  86. Papadopoulou, M., Cassenaer, S., Nowotny, T., Laurent, G. (2011) Normalization for sparse encoding of odors by a wide-field interneuron. Science 332, 721–5PubMedGoogle Scholar
  87. Peele P, Ditzen M, Menzel R, Galizia CG (2006) Appetitive odor learning does not change olfactory coding in a subpopulation of honeybee antennal lobe neurons. J Comp Physiol A 192: 1083-1103. doi: 10.1007/s00359-006-0152-3
  88. Pelz, C., Gerber, B., Menzel, R. (1997) Odorant intensity as a determinant for olfactory conditioning in honeybees: roles in discrimination, overshadowing and memory consolidation. J. Exp. Biol. 200, 837–847PubMedGoogle Scholar
  89. Perez-Orive, J., Mazor, O., Turner, G., Cassenaer, S., Wilson, R., Laurent, G. (2002) Oscillations and sparsening of odor representations in the mushroom body. Science 297, 359–365PubMedGoogle Scholar
  90. Ponce-Alvarez, A., Kilavik, B.E., Riehle, A. (2010) Comparison of local measures of spike time irregularity and relating variability to firing rate in motor cortical neurons. J. Comput. Neurosci. 29, 351–365PubMedGoogle Scholar
  91. Raman, B., Joseph, J., Tang, J., Stopfer, M. (2010) Temporally diverse firing patterns in olfactory receptor neurons underlie spatiotemporal neural codes for odors. J. Neurosci. 30, 1994–2006PubMedGoogle Scholar
  92. Riffell, J.A., Abrell, L., Hildebrand, J.G. (2008) Physical processes and real-time chemical measurement of the insect olfactory environment. J. Chem. Ecol. 34, 837–853PubMedGoogle Scholar
  93. Rinberg, D., Koulakov, A., Gelperin, A. (2006) Sparse odor coding in awake behaving mice. J. Neurosci. 26, 8857–8865PubMedGoogle Scholar
  94. Rössler, W., Zube, C. (2011) Dual olfactory pathway in Hymenoptera: evolutionary insights from comparative studies. Arthropod Structure & Development 40, 349–357Google Scholar
  95. Rybak, J., Kuss, A., Lamecker, H., Zachow, S., Hege, H.C., Lienhard, M., Singer, J., Neubert, K., Menzel, R. (2010) The digital bee brain: integrating and managing neurons in a common 3D reference system. Front. Neuroinf. 4, 30Google Scholar
  96. Rybak J (2012) The digital honey bee brain atlas. In: Galizia CG, Eisenhardt D, Giurfa M (Eds.). Honeybee Neurobiology and Behavior. Springer, Heidelberg, pp. 125–140Google Scholar
  97. Rybak J, Menzel R (2010) Mushroom body of the honeybee. In Gordon M. Shepard, Sten Grillner (Eds). Handbook of Brain Microcircuits. Oxford University Press, Oxford, pp. 433–38Google Scholar
  98. Sachse, S., Galizia, C.G. (2002) Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J. Neurophysiol. 87, 1106–17PubMedGoogle Scholar
  99. Sachse, S., Galizia, C.G. (2003) The coding of odour-intensity in the honeybee antennal lobe: local computation optimizes odour computation. Eur. J. Neurosci. 18, 2119–2132PubMedGoogle Scholar
  100. Sandoz, J.C. (2011) Behavioral and neurophysiological study of olfactory perception and learning in honeybees. Front. Syst. Neurosci. 5, 98. doi: 10.3389/fnsys.2011.00098 PubMedGoogle Scholar
  101. Schlief ML, Wilson RI (2007) Olfactory processing and behavior downstream from highly selective receptor neurons. Nat Neurosci 10: 623-630. doi: 10.1038/nn1881
  102. Schmuker, M., Yamagata, N., Nawrot, M.P., Menzel, R. (2011) Parallel representation of stimulus identity and intensity in a dual pathway model inspired by the olfactory system of the honeybee. Front. Neuroeng. 4, 17. doi: 10.3389/fneng.2011.00017 PubMedGoogle Scholar
  103. Shang, Y., Claridge-Chang, A., Sjulson, L., Pypaert, M., Miesenboeck, G. (2007) Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell 128, 601–612PubMedGoogle Scholar
  104. Silbering, A.F., Galizia, C.G. (2007) Processing of odor mixtures in the drosophila antennal lobe reveals both global inhibition and glomerulus-specific interactions. J. Neurosci. 27, 11966–11977PubMedGoogle Scholar
  105. Sivan, E., Kopell, N. (2006) Oscillations and slow patterning in the antennal lobe. J. Comput. Neurosci. 20, 85–96PubMedGoogle Scholar
  106. Smear, M., Shusterman, R., O'Connor, R., Bozza, T., Rinberg, D. (2011) Perception of sniff phase in mouse olfaction. Nature 479, 397–400. doi: 10.1038/nature10521 PubMedGoogle Scholar
  107. Spors, H., Wachowiak, M., Cohen, L.B., Friedrich, R.W. (2006) Temporal dynamics and latency patterns of receptor neuron input to the olfactory bulb. J. Neurosci. 26(4), 1247–59PubMedGoogle Scholar
  108. Staudacher, E.M., Huetteroth, W., Schachtner, J., Daly, K.C. (2009) A 4-dimensional representation of antennal lobe output based on an ensemble of characterized projection neurons. J. Neurosci. Meth. 180, 208–223Google Scholar
  109. Stopfer, M., Bhagavan, S., Smith, B.H., Laurent, G. (1997) Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390, 70–4PubMedGoogle Scholar
  110. Stopfer, M., Jayaraman, V., Laurent, G. (2003) Intensity versus identity coding in an olfactory system. Neuron 39(6), 991–1004PubMedGoogle Scholar
  111. Strube-Bloss, M., Nawrot, M.P., Menzel, R. (2011) Mushroom body output neurons encode odor-reward associations. J. Neurosci. 31(8), 3129–3140PubMedGoogle Scholar
  112. Sun, X.-J., Fonta, C., Masson, C. (1993) Odour quality processing by bee antennal lobe interneurons. Chem. Senses 18, 355–377Google Scholar
  113. Szyszka, P., Ditzen, M., Galkin, A., Galizia, G., Menzel, R. (2005) Sparsening and temporal sharpening of olfactory representations in the honeybee mushroom bodies. J. Neurophysiol. 94, 3303–3313PubMedGoogle Scholar
  114. Szyszka, P., Galkin, A., Menzel, R. (2008) Associative and non-associative plasticity in Kenyon cells of the honeybee mushroom body. Front. Syst. Neurosci. 2, 3PubMedGoogle Scholar
  115. Szyszka, P., Demmler, C., Oemisch, M., Sommer, L., Biergans, S., Birnbach, B., Silbering, A.F., Galizia, C.G. (2011) Mind the gap: olfactory trace conditioning in honeybees. J. Neurosci. 31, 7229–7239PubMedGoogle Scholar
  116. Thorpe, S., Delorme, A., Van Rullen, R. (2001) Spike-based strategies for rapid processing. Neural Netw. 14, 715–725PubMedGoogle Scholar
  117. Tripp, B., Eliasmith, C. (2010) Population models of temporal differentiation. Neural Comput. 22(3), 621–659PubMedGoogle Scholar
  118. Uchida, N., Mainen, Z.F. (2003) Speed and accuracy of olfactory discrimination in the rat. Nat. Neurosci. 6, 1224–1229PubMedGoogle Scholar
  119. Urban, N.N. (2002) Lateral inhibition in the olfactory bulb and in olfaction. Physiol. Behav. 77, 607–12PubMedGoogle Scholar
  120. Vickers, N.J., Christensen, T.A., Baker, T.C., Hildebrand, J.G. (2001) Odour-plume dynamics influence the brain’s olfactory code. Nature 410, 466–470PubMedGoogle Scholar
  121. Wesson, D., Carey, R., Verhagen, J., Wachowiak, M. (2008) Rapid encoding and perception of novel odors in the rat. PLoS Biol. 6, e82PubMedGoogle Scholar
  122. Wick, S.D., Wiechert, M.T., Friedrich, R.W., Riecke, H. (2010) Pattern orthogonalization via channel decorrelation by adaptive networks. J. Comput. Neurosci. 28, 29–45PubMedGoogle Scholar
  123. Wilson, R.I., Laurent, G. (2005) Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J. Neurosci. 25, 9069–79PubMedGoogle Scholar
  124. Wilson, R., Turner, G., Laurent, G. (2004) Transformation of olfactory representations in the Drosophila antennal lobe. Science 303, 366–370PubMedGoogle Scholar
  125. Wright, G.A., Thomson, M.G., Smith, B.H. (2005) Odour concentration affects odour identity in honeybees. Proc Biol Sci 272, 2417–2422PubMedGoogle Scholar
  126. Wright, G.A., Carlton, M., Smith, B.H. (2009) A honeybee’s ability to learn, recognize, and discriminate odors depends upon odor sampling time and concentration. Behav. Neurosci. 123, 36–43PubMedGoogle Scholar
  127. Yamagata, N., Schmuker, M., Szyszka, P., Mizunami, M., Menzel, R. (2009) Differential odor processing in two olfactory pathways in the honeybee. Front. Syst. Neurosci. 3, 16. doi: 10.3389/neuro.06.016.2009 PubMedGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag, France 2012

Authors and Affiliations

  1. 1.Neuroinformatik/Theoretische Neurobiologie, Institut für BiologieFreie Universität BerlinBerlinGermany
  2. 2.Bernstein Center for Computational NeuroscienceBerlinGermany

Personalised recommendations