Apidologie

, Volume 43, Issue 3, pp 229–243 | Cite as

Vector integration and novel shortcutting in honeybee navigation

  • Randolf Menzel
  • Konstantin Lehmann
  • Gisela Manz
  • Jacqueline Fuchs
  • Miriam Koblofsky
  • Uwe Greggers
Original article

Abstract

Honeybees that had been trained to visit two feeders simultaneously were released at five sites located further away from the training area. Harmonic radar tracking was used to record the complete homing flights. The bees performed multiple straight flight components (SFCs) between curved search flights. SFCs reflect vector directions between the two feeding sites and the respective vectors between the feeding sites and the hive. Direct flights back to the hive were also observed. The latter belong to a homing strategy that requires the bee to identify its location relative to the hive. We interpret these two navigation strategies as reflecting the application of a directional component of novel shortcut flights. Taken together, our findings indicate that bees apply several different directional components of vectors which are either experienced directly during flight or derived from long-distance vector integration or mapping.

Keywords

navigation vector integration shortcut flights cognitive map 

Notes

ACKNOWLEDGEMENTS

The honeybees used in this study were kindly supplied by Mr. Nohr. The harmonic radar system was constructed and built by Prof. Haas and Dipl. Ing. Fischer at the Fachhochschule Emden. We are also grateful to Sabine Wintergerst for her help with the data analysis. This study is supported by the Deutsche Forschungsgemeinschaft (grant Me 365/40-1 to R. Menzel).

REFERENCES

  1. Batschelet, E. (1981) Circular Statistics in Biology. In: Sibson, R., Cohen, J.E. (eds.) Mathematics in biology, pp. 1–372. Academic, LondonGoogle Scholar
  2. Berens, J. (2009) CircStat: A MatLab toolbox for circular statistics. J. Stat. Software 31 (10). http://www.jstatsoft.org/v31/i10
  3. Collett, T.S., Collett, M. (2000) Path integration in insects. Curr. Opin. Neurobiol. 10, 757–762PubMedCrossRefGoogle Scholar
  4. Collett, T.S., Collett, M. (2002) Memory use in insect visual navigation. Nat. Rev. Neurosci. 3, 542–552PubMedCrossRefGoogle Scholar
  5. Cruse, H., Wehner, R. (2011) No need for a cognitive map: decentralized memory for insect navigation. PLoS Comput. Biol. 7(3), e1002009PubMedCrossRefGoogle Scholar
  6. Dyer, F.C. (1991) Honey bees acquire route-based memories but not cognitive maps in a familiar landscape. Anim. Behav. 41, 239–246CrossRefGoogle Scholar
  7. Dyer, F.C., Gould, J.L. (1981) Honey bee orientation: a backup system for cloudy days. Science 214, 1041–1042PubMedCrossRefGoogle Scholar
  8. Fisher, N.I. (1996) Statistical analysis of circular data. Cambridge University Press, CambridgeGoogle Scholar
  9. Gould, J.L. (1986) The locale map of honey bees: do insects have cognitive maps? Science 232, 861–863PubMedCrossRefGoogle Scholar
  10. Menzel, R., Geiger, K., Müller, U., Joerges, J., Chittka, L. (1998) Bees travel novel homeward routes by integrating separately acquired vector memories. Anim. Behav. 55, 139–152PubMedCrossRefGoogle Scholar
  11. Menzel, R., Brandt, R., Gumbert, A., Komischke, B., Kunze, J. (2000) Two spatial memories for honeybee navigation. Proc. R. Soc. Lond. B 267, 961–968CrossRefGoogle Scholar
  12. Menzel, R., Greggers, U., Smith, A., Berger, S., Brandt, R., Brunke, S., Bundrock, G., Huelse, S., Pluempe, T., Schaupp, F., et al. (2005) Honeybees navigate according to a map-like spatial memory. Proc. Natl. Acad. Sci. U.S.A. 102, 3040–3045PubMedCrossRefGoogle Scholar
  13. Menzel, R., Kirbach, A., Haass, W.-D., Fischer, B., Fuchs, J., Koblofsky, M., Lehmann, K., Reiter, L., Meyer, H., Nguyen, H., Jones, S., Norton, P., Greggers, U. (2011) A common frame of reference for learned and communicated vectors in honeybee navigation. Curr. Biol. 21(8), 645–650PubMedCrossRefGoogle Scholar
  14. Merkle, T., Wehner, R. (2008) Landmark guidance and vector navigation in outbound desert ants. J. Exp. Biol. 211, 3370–3377PubMedCrossRefGoogle Scholar
  15. Riley, J.R., Smith, A.D., Reynolds, D.R., Edwards, A.S., Osborne, J.L., Williams, I.H., Carreck, N.L., Poppy, G.M. (1996) Tracking bees with harmonic radar. Nature 379, 29–30CrossRefGoogle Scholar
  16. Sommer, S., von Beeren, C., Wehner, R. (2008) Multiroute memories in desert ants. Proc. Natl. Acad. Sci. U.S.A. 105(1), 317–322PubMedCrossRefGoogle Scholar
  17. Tolman, E.C. (1948) Cognitive maps in rats and men. Psychol. Rev. 55, 189–208PubMedCrossRefGoogle Scholar
  18. Towne, W.F., Moscrip, H. (2008) The connection between landscapes and the solar ephemeris in honeybees. J. Exp. Biol. 211, 3729–3736PubMedCrossRefGoogle Scholar
  19. Von Frisch, K. (1965) Dance language and orientation of bees. Harvard University Press, CambridgeGoogle Scholar
  20. Von Frisch, K., Lindauer, M. (1954) Himmel und Erde in Konkurrenz bei der Orientierung der Bienen. Naturwissenschaften 41, 245–253CrossRefGoogle Scholar
  21. Wehner, R., Menzel, R. (1990) Do insects have cognitive maps? Annu. Rev. Neurosci. 13, 403–414PubMedCrossRefGoogle Scholar
  22. Wehner, R., Boyer, M., Loertscher, F., Sommer, S., Menzi, U. (2006) Ant navigation: one-way routes rather than maps. Curr. Biol. 16(1), 75–79PubMedCrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag, France 2012

Authors and Affiliations

  • Randolf Menzel
    • 1
  • Konstantin Lehmann
    • 1
  • Gisela Manz
    • 1
  • Jacqueline Fuchs
    • 1
  • Miriam Koblofsky
    • 2
  • Uwe Greggers
    • 1
  1. 1.Institut für BiologieFreie Universität BerlinBerlinGermany
  2. 2.Theodor-Boveri-Institut für BiowissenschaftenUniversität WürzburgWürzburgGermany

Personalised recommendations