, Volume 43, Issue 2, pp 128–138 | Cite as

RNA interference in honeybees: off-target effects caused by dsRNA

  • Antje Jarosch
  • Robin F. A. Moritz
Original article


RNA interference involves the targeted knockdown of mRNA triggered by complementary dsRNA molecules applied to an experimental organism. Although this technique has been successfully used in honeybees (Apis mellifera), it remains unclear whether the application of dsRNA leads to unintended expression knockdown in unspecific, non-targeted genes. Therefore, we studied the gene expression of four non-target genes coding for proteins that are involved in different physiological processes after treatment with three dsRNAs in two abdominal tissues. We found unspecific gene downregulation depending on both the dsRNA used and the different tissues. Hence, RNAi experiments in the honeybee require rigid controls and carefully selected dsRNA sequences to avoid misinterpretation of RNAi-derived phenotypes.


RNA interference honeybees off-target effects real-time PCR 



This study was financially supported by the DFG (RFAM).


  1. Amdam, G.V., Simoes, Z., Guidugli, K., Norberg, K., Omholt, S. (2003) Disruption of vitellogenin gene function in adult honeybees by intra-abdominal injection of double-stranded RNA. BMC Biotechnol. 3, 1PubMedCrossRefGoogle Scholar
  2. Aronstein, K., Saldivar, E. (2005) Characterization of a honey bee toll related receptor gene am18w and its potential involvement in antimicrobial immune defense. Apidologie 36, 3–14CrossRefGoogle Scholar
  3. Aronstein, K., Pankiw, T., Saldivar, E. (2006) Sid-1 is implicated in systemic gene silencing in the honey bee. J. Apic. Res. 45, 20–24Google Scholar
  4. Beye, M., Hasselmann, M., Page Jr., F., Omholt, S.W. (2003) The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell 114, 419–429PubMedCrossRefGoogle Scholar
  5. Bhoumik, A., Lopez-Bergami, P., Ronai, Z. (2007) Atf2 on the double-activating transcription factor and DNA damage response protein. Pigm. Cell. Res. 20, 498–506CrossRefGoogle Scholar
  6. Brisson, D., Vohl, M.C., St-Pierre, J., Hudson, T.J., Gaudet, D. (2001) Glycerol: a neglected variable in metabolic processes? Bioessays 23, 534–542PubMedCrossRefGoogle Scholar
  7. Chomczynski, P., Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal. Biochem. 162, 156–159PubMedCrossRefGoogle Scholar
  8. Coleman, R., Lee, D.P. (2004) Enzymes of triacylglycerol synthesis and their regulation. Prog. Lipid Res. 43, 134–176PubMedCrossRefGoogle Scholar
  9. de Oliveira, V.T.P.D., Cruz-Landim, C.D. (2003) Morphology and function or insect fat body cells: a review. Biociencias 11, 195–205Google Scholar
  10. Del Sal, G., Manfioletti, G., Schneider, C. (1988) A one-tube plasmid DNA mini-preparation suitable for sequencing. Nucleic Acids Res. 16, 20CrossRefGoogle Scholar
  11. Engels, W. (1968) Extra-oocytic components of egg growth in Apis mellifica. I. Trophocytic uptake of ribonucleic acid. Insectes Soc. 15, 271–288CrossRefGoogle Scholar
  12. Farooqui, T., Vaessin, H., Smith, B.H. (2004) Octopamine receptors in the honeybee (Apis mellifera) brain and their disruption by RNA-mediated interference. J. Insect Physiol. 50, 701–713PubMedCrossRefGoogle Scholar
  13. Feinberg, E.H., Hunter, C.P. (2003) Transport of dsRNA into cells by the transmembrane protein SID-1. Science 301, 1545–1547PubMedCrossRefGoogle Scholar
  14. Feyereisen, R. (1999) Insect p450 enzymes. Annu. Rev. Entomol. 44, 507–533PubMedCrossRefGoogle Scholar
  15. Fire, F., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811PubMedCrossRefGoogle Scholar
  16. Gatehouse, H.S., Gatehouse, L.N., Malone, L.A., Hodges, S., Tregidga, E., Todd, J. (2004) Amylase activity in honey bee hypopharyngeal glands reduced by RNA interference. J. Apic. Res. 43, 9–13Google Scholar
  17. Jackson, A.L., Bartz, S.R., Schelter, J., Kobayashi, S.V., Burchard, J., Mao, M., Li, B., Cavet, G., Linsley, P.S. (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637PubMedCrossRefGoogle Scholar
  18. Jackson, A.L., Burchard, J., Schelter, J., Chau, B.N., Cleary, M., Lim, L., Linsley, P.S. (2006) Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12, 1179–1187PubMedCrossRefGoogle Scholar
  19. Jarosch, A., Moritz, R.F.A. (2011) Systemic RNA-interference in the honeybee Apis mellifera: tissue dependent uptake of fluorescent siRNA after intra-abdominal application observed by laser-scanning microscopy. J. Insect Physiol. 57, 851–857PubMedCrossRefGoogle Scholar
  20. King, R.C., Aggarwal, S.K., Aggarwal, U. (1968) The development of the female Drosophila reproductive system. J. Morphol. 124, 143–165PubMedCrossRefGoogle Scholar
  21. Kucharski, R., Maleszka, J., Foret, S., Maleszka, R. (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science 319, 1827–1830PubMedCrossRefGoogle Scholar
  22. Kulkarni, M.M., Booker, M., Silver, S.J., Friedman, A., Hong, P., Perrimon, N., Mathey-Prevot, B. (2006) Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays. Nat. Meth. 3, 833–838Google Scholar
  23. Kumar, M., Carmichael, G.G. (1998) Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes. Microbiol. Mol. Biol. R. 62, 1415–1434Google Scholar
  24. Lourenço, A.P., Mackert, A., dos Santos Cristino, A., Simões, Z.L. (2008) Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie 39, 372–385CrossRefGoogle Scholar
  25. Maniatis, T., Fritsch, E.F., Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual, 2nd edn, pp. 458–460. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  26. Maori, E., Paldi, N., Shafir, S., Kalev, H., Tsur, E., Glick, E., Sela, I. (2009) IAPV, a bee-affecting virus associated with colony collapse disorder can be silenced by dsRNA ingestion. Insect Mol. Biol. 18, 55–60PubMedCrossRefGoogle Scholar
  27. Müßig, L., Richlitzki, A., Rößler, R., Eisenhardt, D., Menzel, R., Leboulle, G. (2010) Acute disruption of the NMDA receptor subunit NR1 in the honeybee brain selectively impairs memory formation. J. Neurosci. 30, 7817–7825PubMedCrossRefGoogle Scholar
  28. Mustard, J.A., Pham, P.M., Smith, B.H. (2010) Modulation of motor behavior by dopamine and the d1-like dopamine receptor AmDOP2 in the honey bee. J. Insect Physiol. 56, 422–430PubMedCrossRefGoogle Scholar
  29. Nanduri, S., Carpick, B.W., Yang, Y., Williams, B.R., Qin, J. (1998) Structure of the double-stranded RNA-binding domain of the protein kinase PKR reveals the molecular basis of its dsRNA-mediated activation. EMBO J. 17, 5458–5465PubMedCrossRefGoogle Scholar
  30. Nunes, F.M., Simões, Z.L. (2009) A non-invasive method for silencing gene transcription in honeybees maintained under natural conditions. Insect Biochem. Mol. Biol. 39, 157–160PubMedCrossRefGoogle Scholar
  31. Oates, A.C., Bruce, A.E.E., Ho, R.K. (2000) Too much interference: injection of double-stranded RNA has nonspecific effects in the zebrafish embryo. Dev. Biol. 224, 20–28PubMedCrossRefGoogle Scholar
  32. Paldi, N., Glick, E., Oliva, M., Zilberberg, Y., Aubin, L., Pettis, J., Chen, Y., Evans, J.D. (2010) Effective gene silencing in a microsporidian parasite associated with honeybee (Apis mellifera) colony declines. Appl. Environ. Microbiol. 76, 5960–5964PubMedCrossRefGoogle Scholar
  33. Patel, A., Fondrk, M.K., Kaftanoglu, O., Emore, C., Hunt, G., Frederick, K., Amdam, G.V. (2007) The making of a queen: Tor pathway is a key player in diphenic caste development. PLoS One 2, e509PubMedCrossRefGoogle Scholar
  34. Peccoud, J., Jacob, C. (1996) Theoretical uncertainty of measurements using quantitative polymerase chain reaction. Biophys. J. 71, 101–108PubMedCrossRefGoogle Scholar
  35. Pfaffl, M.W. (2001a) Development and validation of an externally standardised quantitative insulin like growth factor-1 (IGF-1) RT–PCR using LightCycler SYBR® Green I technology. In: Meuer, S., Wittwer, C., Nakagawara, K. (eds.) Rapid Cycle Real-Time PCR: Methods and Applications, pp. 281–291. Springer, HeidelbergCrossRefGoogle Scholar
  36. Pfaffl, M.W. (2001b) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45PubMedCrossRefGoogle Scholar
  37. Rozen, S., Skaletsky, H.J. (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz, S., Misener, S. (eds.) Bioinformatics Methods and Protocols: Methods in Molecular Biology, pp. 365–386. Humana, TotowaGoogle Scholar
  38. Scacheri, P.C., Rozenblatt-Rosen, O., Caplen, N.J., Wolfsberg, T.G., Umayam, L., Lee, J.C., Hughes, C.M., Shanmugam, K.S., Bhattacharjee, A., Meyerson, M., Collins, F.S. (2004) Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 101, 1892–1897PubMedCrossRefGoogle Scholar
  39. Schlüns, H., Crozier, R.H. (2007) Relish regulates expression of antimicrobial peptide genes in the honeybee, (Apis mellifera), shown by RNA interference. Insect Mol. Biol. 16, 753–759PubMedCrossRefGoogle Scholar
  40. Seehuus, S.C., Norberg, K., Gimsa, U., Krekling, T., Amdam, G.V. (2006) Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc. Natl. Acad. Sci. U.S.A. 103, 962–967PubMedCrossRefGoogle Scholar
  41. Sledz, C.A., Williams, B.R.G. (2004) RNA interference and double-stranded-RNA-activated pathways. Biochem. Soc. Trans. 32, 952–956PubMedCrossRefGoogle Scholar
  42. Williams, B.R. (1999) Pkr: a sentinel kinase for cellular stress. Oncogene 18, 6112–6120PubMedCrossRefGoogle Scholar
  43. Winston, W.M., Molodowitch, C., Hunter, C.P. (2002) Systemic RNAi in C. elegans requires the putative transmembrane protein sid-1. Science 295, 2456–2459PubMedCrossRefGoogle Scholar
  44. Zhao, Z., Cao, Y., Li, M., Meng, A. (2001) Double-stranded RNA injection produces nonspecific defects in zebrafish. Dev. Biol. 229, 215–223PubMedCrossRefGoogle Scholar

Copyright information

© INRA, DIB-AGIB and Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institut für BiologieMartin-Luther-Universität Halle-WittenbergHalle (Saale)Germany
  2. 2.Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations