Advertisement

Apidologie

, Volume 42, Issue 6, pp 700–707 | Cite as

In vivo evaluation of antiparasitic activity of plant extracts on Nosema ceranae (Microsporidia)

  • Martín Pablo Porrini
  • Natalia Jorgelina Fernández
  • Paula Melisa Garrido
  • Liesel Brenda Gende
  • Sandra Karina Medici
  • Martín Javier Eguaras
Original article

Abstract

This study evaluated the activity of plant extracts on Nosema ceranae development and their toxicity on the infected host Apis mellifera. Newly emerged bees were fed ad libitum with enriched syrups after individual infection. Diets consisted of ethanolic extracts obtained from Artemisia absinthium, Allium sativum, Laurus nobilis, and Ilex paraguariensis diluted in syrup at 1% and 10% concentrations. Examination of individual midgut homogenates on day 19 post-infection indicated that 1% concentration of L. nobilis extract significantly inhibited N. ceranae development. Absinth extract, previously reported as effective against Nosema apis, did not diminish the number of N. ceranae spores throughout the experiment. Ten percent concentrations showed high toxicity on infected bees, but also a significant activity diminishing parasitosis development in short periods. Syrups with the addition of extracts were consumed avidly as the control, even more in some cases. The present study constitutes the first report of antiparasitic activity in vivo of plant extracts against the Microsporidian N. ceranae and postulate natural substances as an alternative for antiparasitic treatment.

Keywords

Apis mellifera Nosema ceranae plant extract antiparasitic treatment 

Notes

Acknowledgments

The authors wish to thank CONICET, UNMdP. This research was supported by ANPCyT (FONCyT), project PICT 890/06, to M.E. We thank the support provided by the 426 Animal Production Department, EEA INTA, Balcarce, the Fares Taie Laboratories Food Division and the contribution made by Enrique Tkacik.

Evaluation in vivo de l'activité anti-parasitaire d'extraits de plantes sur Nosema ceranae (Microsporidia)

Apis mellifera / Nosema ceranae / extrait de plante / traitement anti-parasitaire

Eine in vivo Methode zur Beurteilung der antiparasitischen Wirkung von Pflanzenextrakten gegen Nosema ceranae (Microsporidia)

Apis mellifera / Nosema ceranae / Pflanzenextrakt / antiparasitische Behandlung

References

  1. Adamczyk, S., Lázaro, R., Pérez-Arquillué, C., Conchello, P., Herrera, A. (2005) Evaluation of residues of essential oil components in honey after different anti-Varroa treatments. J Agric Food Chem. 53,10085–10090. doi: 10.1021/jf051813f Google Scholar
  2. Adler, L.S. (2000) The ecological significance of toxic nectar. Oikos 91, 409–420CrossRefGoogle Scholar
  3. Ahameethunisa, A.R., Hopper, W. (2010) Antibacterial activity of Artemisia nilagirica leaf extracts against clinical and phytopathogenic bacteria. BMC Comp Altern Med 10, 6. http://www.biomedcentral.com/1472-6882/10/6 CrossRefGoogle Scholar
  4. Ankri, S., Mirelman, D. (1999) Antimicrobial properties of allicin from garlic. Microbes Infect 2(2), 125–9 doi: 10.1016/S1286-4579(99)80003-3 Google Scholar
  5. Ankri, S., Miron, T., Rabinkov, A., Wilchek, M., Mirelman, D. (1997) Allicin from garlic strongly inhibits cysteine proteinases and cytopathic effects of Entamoeba histolytica. Antimicrob. Agents Chemother. 10, 2286–2288Google Scholar
  6. Berbehenn, R.V., Martin, M.M. (1994) Tannin sensitivity in larvae of Malacosoma disstria (Lepidoptera): roles of the pertitrophic envelope and midgut oxidation. J. Chem. Ecol. 20, 1985–2001CrossRefGoogle Scholar
  7. Block, E. (1992) The organosulfur chemistry of the genus Allium -Implication for the organic chemistry of sulfur. Angew. Chem. Int. 31, 1135–1178CrossRefGoogle Scholar
  8. Cantwell, G.E. (1970) Standard methods for counting nosema spores. Am. Bee Jj. 110, 220–223Google Scholar
  9. Costa, C., Lodesani, M., Maistrello, L. (2010) Effect of thymol and resveratrol administered with candy or syrup on the development of Nosema ceranae and on the longevity of honeybees (Apis mellifera L.) in laboratory conditions. Apidologie 41, 141–150CrossRefGoogle Scholar
  10. Damiani, N. (2010) Control del parásito Varroa destructor (Acari: Varroidae) en colmenas de Apis mellifera (Hymenoptera: Apidae). Doctoral thesis. School of Exact and Naturals Science. National University of Mar del Plata. Argentina (in Spanish)Google Scholar
  11. Ertürk, O. (2006) Antibacterial and antifungal activity of ethanolic extracts from eleven spice plants. Sect. Cell. Mol. Biol. 61, 275–278Google Scholar
  12. Fries, I. (2010) Nosema ceranae in European honey bees (Apis mellifera). J Invertebr. Pathol. 103, 73–79CrossRefGoogle Scholar
  13. Gende, L.B. (2009) Principales componentes de aceites esenciales relacionados con actividad antimicrobiana frente a Paenibacillus larvae. Doctoral thesis. School of Pharmacy and Biochemistry. University of Buenos Aires. Argentina (in Spanish).Google Scholar
  14. Gende, L.B., Principal, J., Maggi, M.D., Palacios, S.M., Fritz, R., Eguaras, M.J. (2008) Extracto de Melia azedarach y aceites esenciales de Cinnamomun zeylanicum, Mentha piperita y Lavandula officinalis como control de Paenibacillus larvae. Zoot. Trop. 26, 151–156Google Scholar
  15. He, X.G. (2000) On-line identification of phytochemical constituents in botanical extracts by combined high-performance liquid chromatographic–diode array detection–mass spectrometric techniques. J. Chromatogr. 880, 203–232CrossRefGoogle Scholar
  16. Higes, M., García-palencia, P., Martín-Hernández, R., Meana, A. (2007) Experimental infection of Apis mellifera with Nosema ceranae (Microsporidia). J. Invertebr. Pathol. 94, 211–217PubMedCrossRefGoogle Scholar
  17. Keeling, P.J., Fast, N.M. (2002) Microsporidia: Biology and evolution of highly reduced intracellular parasites. Annu. Rev. Microbiol. 56, 93–116PubMedCrossRefGoogle Scholar
  18. Lawson, L.D. (1993) Bioactive organosulfur compound of garlic and garlic products: role in reducing blood lipids. In: Kinghorn, A.D., Balandrin, M.F. (eds.) Human medicinal agents from plants, pp. 306–330. American Chemical Society, WashingtonCrossRefGoogle Scholar
  19. Lawson, L.D., Block, E. (1997) Comments on garlic chemistry stability of s-(2-propenyl) 2 propene-1- sulfinothioate (allicin) in blood solvents and stimulated physiological fluids. J. Agric. Food. Chem. 45, 542CrossRefGoogle Scholar
  20. Leiro, J., Cano, E., Ubeira, F.M., Orallo, F., Sanmartìn, M.L. (2004) In vitro effects of resveratrol on the viability and infectivity of the Microsporidian Encephalitozoon cuniculi. Antimicrob. Agents Ch. 48, 2497–2501CrossRefGoogle Scholar
  21. Maistrello, L., Lodesani, M., Costa, C., Leonardi, F., Marani, G., Caldon, M., Mutinelli, F., Granato, A. (2008) Screening of natural compounds for the control of nosema disease in honey bees (Apis mellifera). Apidologie 39, 436–444CrossRefGoogle Scholar
  22. Martín-Hernández, R., Meana, A., Prieto, L., Martínez, S.A., Garrido-Bailón, E., Higes, M. (2007) Outcome of Colonization of Apis mellifera by Nosema ceranae. Appl. Environ. Microbiol. 73, 6331–6338PubMedCrossRefGoogle Scholar
  23. Mayack, C., Naug, D. (2009) Energetic stress in the honey bee Apis mellifera from Nosema ceranae infection. J. Invertebr. Pathol. 100(3), 185–188PubMedCrossRefGoogle Scholar
  24. Mirelman, D., Monheit, D., Varon, S. (1987) Inhibition of growth of Entamoeba histolytica by Allicin, the active principle of garlic extract (Allium sativum). J. Infect. Dis. 156, 243–244PubMedCrossRefGoogle Scholar
  25. Nanasombat, S., Lohasupthawee, P. (2005) Antibacterial activity of crude ethanolic extracts and essential oils of spices against salmonellae and other enterobacteria. Sci. Tech. J. 5, 462–469Google Scholar
  26. Nejad, B.S., Deokule, S.S. (2009) Anti-dermatophytic activity of Drynaria quercifolia (L.). Jundishapur. J. Microbiol. 2, 25–30Google Scholar
  27. Ong, E.S. (2004) Extraction methods and chemical standardization of botanicals and herbal preparations. J. Chromatogr. 812, 23–33Google Scholar
  28. Paxton, R.J., Klee, J., Korpelab, S., Fries, I. (2007) Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis. Apidologie 38, 558–565CrossRefGoogle Scholar
  29. Pohorecka, K. (2004a) Effect of standardized plant herb extracts on general condition of the honeybee (Apis mellifera l.). Bull. Vet. Inst. Pulawy. 48, 415–419Google Scholar
  30. Pohorecka, K. (2004b) Laboratory studies on the effect of standardized Artemisia absinthium L. extract on Nosema apis infection in the worker Apis mellifera. J. Apic. Sci. 48, 131–136Google Scholar
  31. Porrini, M.P., Audisio, M.C., Sabaté, D.C., Ibarguren, C., Medici, S.K., Sarlo, E.G., Garrido, P.M., Eguaras, M.J. (2010) Effect of bacterial metabolites on microsporidian Nosema ceranae and on its host Apis mellifera. Parasitol. Res. 107, 381–388PubMedCrossRefGoogle Scholar
  32. Porrini, M.P., Sarlo, E.G., Medici, S.K., Garrido, P.M., Porrini, D.P., Eguaras, M.J. (2011) Nosema ceranae development in Apis mellifera: Influence of diet and infective inoculum. J. Apic. Res. 50(1), 35–41CrossRefGoogle Scholar
  33. Rinderer, T.E. (1976) Honey bees: individual feeding of large numbers of adult workers. J. Econ. Entomol. 69, 489–491Google Scholar
  34. Rodríguez Vaquero, M.J., Tomassini Serravalle, L.R., Manca de Nadra, M.C., Strasser de Saad, A.M. (2009) Antioxidant capacity and antibacterial activity of phenolic compounds from argentinean herbs infusions. Food Control. 21, 799–785Google Scholar
  35. Soylu, E.M., Tok, F.M., Soylu, S., Kaya, A.D., Evrendilek, G.A. (2005) Antifungal activities of essential oils on post harvest disease agent Penicillium digitatum. Pak. J. Biol. Sci. 8, 25–29CrossRefGoogle Scholar
  36. Tariq, K.A., Chishti, M.Z., Ahmada, F., Shawl, A.S. (2009) Anthelmintic activity of extracts of Artemisia absinthium against ovine nematodes. Vet. Parasitol. 160, 83–88PubMedCrossRefGoogle Scholar
  37. Williams, G.R., Sampson, M.A., Shutler, D., Rogers, R. (2008) Does fumagillin control the recently detected invasive parasite Nosema ceranae in western honey bees (Apis mellifera)? J. Invertebr. Pathol. 99, 342–344PubMedCrossRefGoogle Scholar
  38. Yoshida, M., Fuchigami, M., Nagao, T., Okabe, H., Matsunaga, K., Takata, J., Karube, Y., Tsuchihashi, R., Kinjo, J., Mihashi, K., Fujioka, T. (2005) Antiproliferative constituents from Umbelliferae plants VII. Active triterpenes and rosmarinic acid from Centella asiatica. Biol. Pharmacol. Bull. 28, 173–175CrossRefGoogle Scholar

Copyright information

© INRA, DIB-AGIB and Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Martín Pablo Porrini
    • 1
    • 2
  • Natalia Jorgelina Fernández
    • 1
    • 3
  • Paula Melisa Garrido
    • 1
    • 3
  • Liesel Brenda Gende
    • 1
    • 3
  • Sandra Karina Medici
    • 1
    • 3
  • Martín Javier Eguaras
    • 1
    • 3
  1. 1.Arthropods Laboratory, School of Exact and Natural SciencesNational University of Mar del PlataFunesArgentina
  2. 2.Agencia Nacional de Promoción Científica y TécnológicaBuenos AiresArgentina
  3. 3.Consejo Nacional de Investigaciónes Científicas y TécnicasBuenos AiresArgentina

Personalised recommendations