Advertisement

Apidologie

, 42:519 | Cite as

Mating frequency and genetic colony structure of the neotropical bumblebee Bombus wilmattae (Hymenoptera: Apidae)

  • Anett Huth-SchwarzEmail author
  • Adolfo León
  • Rémy Vandame
  • Robin F. A. Moritz
  • F. Bernhard Kraus
Original article

Abstract

So far, nearly all studies concerning the mating frequency of bumblebees have been conducted with temperate species, showing that single mating seems to be the predominant pattern in bumblebees. Studies involving tropical species, however, are still scarce. Here, we determined the mating frequency of queens of the tropical bumblebee species, Bombus wilmattae by using microsatellite genotyping based on a sample of nine colonies from Chiapas, Southern Mexico. A total of 204 workers were genotyped with microsatellite markers to infer the queen genotype and the number of males with which each queen had mated. Two of the nine queens were doubly mated and seven singly mated. In the colonies with the double-mated queens, the distribution of the patrilines was not even, resulting in effective mating frequencies of 1.34 and 1.70, respectively, and an average relatedness of g = 0.58 ± 0.06.

Keywords

Bombus wilmattae bumblebees eusocial Hymenoptera mating frequency microsatellites 

Notes

Acknowledgements

We would like to thank Petra Leibe for her assistance in the lab and Daniel Sánchez Guillén for his help and support during the sampling in Chiapas (Mexico). This study was funded by the Helmholtz Interdisciplinary Graduate School for Environmental Research (HIGRADE) and the Mexican–European FONCICYT 94293 grant “MUTUAL—Mutualisms with bees in tropical landscapes: risks and rescue for biodiversity and crop production” which are acknowledged here.

References

  1. Baer, B., Schmid-Hempel, P. (1999) Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee. Nature 397, 151–154CrossRefGoogle Scholar
  2. Baer, B., Schmid-Hempel, P. (2001) Unexpected consequences of polyandry for parasitism and fitness in the bumblebee Bombus terrestris. Evolution 55, 1639–1643PubMedGoogle Scholar
  3. Boomsma, J.J., Ratnieks, F.L.W. (1996) Paternity in eusocial Hymenoptera. Phil. Trans. R. Soc. Lond. B 351, 947–975CrossRefGoogle Scholar
  4. Crozier, R.H., Pamilo, P. (1996) Evolution of social insect colonies. Sex allocation and kin selection. Oxford University Press, OxfordGoogle Scholar
  5. Cumming, G.S. (2000) Using habitat models to map diversity: pan-African species richness of ticks (Acari: Ixodida). J. Biogeogr. 27, 425–440CrossRefGoogle Scholar
  6. Estoup, A., Solignac, M., Harry, M., Cornuet, J.M. (1993) Characterization of (Gt)N and (Ct)N microsatellites in 2 insect species—Apis mellifera and Bombus terrestris. Nucleic Acids Res. 21, 1427–1431PubMedCrossRefGoogle Scholar
  7. Estoup, A., Scholl, A., Pouvreau, A., Solignac, M. (1995) Monoandry and polyandry in bumble bees (Hymenoptera–Bombinae) as evidenced by highly variable microsatellites. Mol. Ecol. 4, 89–93PubMedCrossRefGoogle Scholar
  8. Foster, K.R., Ratnieks, F.L.W. (2001) Convergent evolution of worker policing by egg eating in the honeybee and common wasp. Proc. R. Soc. Lond. B 268, 169–174CrossRefGoogle Scholar
  9. Garofalo, C.A., Zucchi, R., Muccillo, G. (1986) Reproductive studies of a neotropical bumblebee, Bombus atratus (Hymenoptera, Apidae). Bras. J. Genet. 9, 231–243Google Scholar
  10. Hamilton, W.D. (1964a) The genetical theory of the evolution of social behaviour. J. Theor. Biol. 7, 1–16PubMedCrossRefGoogle Scholar
  11. Hamilton, W.D. (1964b) The genetical theory of the evolution of social behaviour. J. Theor. Biol. 7, 17–52PubMedCrossRefGoogle Scholar
  12. Hines, H.M., Cameron, S.A., Williams, P.H. (2006) Molecular phylogeny of the bumble bee subgenus Pyrobombus (Hymenoptera: Apidae: Bombus) with insights into gene utility for lower-level analysis. Invertebr. Syst. 20, 289–303CrossRefGoogle Scholar
  13. Holehouse, K.A., Hammond, R.L., Bourke, A.F.G. (2003) Non-lethal sampling of DNA from bumble bees for conservation genetics. Insectes Soc. 50, 277–285CrossRefGoogle Scholar
  14. Keller, L., Reeve, H.K. (1994) Genetic variability, queen number, and polyandry in social Hymenoptera. Evolution 48, 694–704CrossRefGoogle Scholar
  15. Kokuvo, N., Toquenaga, Y., Goka, K. (2009) Effective paternity in natural colonies of Japanese native bumble bees. Ecol. Res. 24, 1111–1115CrossRefGoogle Scholar
  16. Labougle, J.M. (1990) Bombus of Mexico and Central America (Hymenoptera, Apidae). Univ. Kansas Sci. Bull. 54, 35–73Google Scholar
  17. Mattila, H.R., Seeley, T.D. (2007) Genetic diversity in honeybee colonies enhances productivity and fitness. Science 317, 362–364PubMedCrossRefGoogle Scholar
  18. Michener, C.D., LaBerge, W.E. (1954) A large Bombus nest from Mexico. Psyche 61, 63–67CrossRefGoogle Scholar
  19. Moilanen, A., Sundström, L., Pedersen, J.S. (2004) MATESOFT: a program for deducing parental genotypes and estimating mating system statistics in haplodiploid species. Mol Ecol Notes 4, 795–797CrossRefGoogle Scholar
  20. Moller, A.P. (1998) Evidence of larger impact of parasites on hosts in the tropics: investment in immune function within and outside the tropics. Oikos 82, 265–270CrossRefGoogle Scholar
  21. Moritz, R.F.A., Kryger, P., Koeniger, G., Koeniger, N., Estoup, A., Tingek, S. (1995) High-degree of polyandry in Apis dorsata queens detected by DNA microsatellite variability. Behav. Ecol. Sociobiol. 37, 357–363CrossRefGoogle Scholar
  22. Nunn, C.L., Altizer, S.M. (2005) The global mammal parasite database: an online resource for infectious disease records in wild primates. Evol. Anthropol. 14, 1–2CrossRefGoogle Scholar
  23. Park S.D.E. (2001) Trypanotolerance in West African Cattle and the population genetic effects of selection, University of Dublin.Google Scholar
  24. Paxton, R.J., Thoren, P.A., Estoup, A., Tengo, J. (2001) Queen-worker conflict over male production and the sex ratio in a facultatively polyandrous bumblebee, Bombus hypnorum: the consequences of nest usurpation. Mol. Ecol. 10, 2489–2498PubMedGoogle Scholar
  25. Payne, C.M., Laverty, T.M., Lachance, M.A. (2003) The frequency of multiple paternity in bumblebee (Bombus) colonies based on microsatellite DNA at the B10 locus. Insectes Soc. 50, 375–378CrossRefGoogle Scholar
  26. Plath, O.E. (1934) Bumblebees and their ways. The Macmillan Company, New YorkGoogle Scholar
  27. Poulin R., Morand S. (2004) Parasite biodiversity, Smithson. Inst. Press, Washington D.C.Google Scholar
  28. Poulin, R., Rohde, K. (1997) Comparing the richness of metazoan ectoparasite communities of marine fishes: controlling for host phylogeny. Oecologia 110, 278–283CrossRefGoogle Scholar
  29. Raymond, M., Rousset, F. (1995) Genepop (version-1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249Google Scholar
  30. Röseler, P. (1973) Die Anzahl der Spermien im Receptaculum Seminis von Hummelköniginnen (Hym., Apoidea, Bombinae). Apidologie 4, 267–274CrossRefGoogle Scholar
  31. Sauter, A., Brown, M.J.F., Baer, B., Schmid-Hempel, P. (2001) Males of social insects can prevent queens from multiple mating. Proc. R. Soc. Lond. B 268, 1449–1454CrossRefGoogle Scholar
  32. Schmid-Hempel, R., Schmid-Hempel, P. (2000) Female mating frequencies in Bombus spp. from Central Europe. Insect. Soc. 47, 36–41CrossRefGoogle Scholar
  33. Sherman, P.W., Seeley, T.D., Reeve, H.K. (1988) Parasites, pathogens, and polyandry in social Hymenoptera. Am. Nat. 131, 602–610CrossRefGoogle Scholar
  34. Sladen, F.W.L. (1912) The humble-bee, its life-history and how to domesticate it. Macmillan and Company, LondonGoogle Scholar
  35. Starr, C.K. (1979) Origin and evolution of insect sociality: a review of modern theory. In: Hermann, H.R. (ed.) Social Insects, pp. 35–79. Academic, New YorkGoogle Scholar
  36. Starr, C.K. (1984) Sperm competition, kinship, and sociality in the aculeate Hymenoptera. In: Smith, R.L. (ed.) Sperm competition and the evolution of animal mating systems, pp. 427–464. Academic, OrlandoGoogle Scholar
  37. Stolle, E., Rohde, M., Vautrin, D., Solignac, M., Schmid-Hempel, P., Schmid-Hempel, R., Moritz, R.F.A. (2009) Novel microsatellite DNA loci for Bombus terrestris (Linnaeus, 1758). Mol. Ecol. Resour. 9, 1345–1352PubMedCrossRefGoogle Scholar
  38. Strassmann, J. (2001) The rarity of multiple mating by females in the social Hymenoptera. Insectes Soc. 48, 1–13CrossRefGoogle Scholar
  39. Takahashi, J., Ayabe, T., Mitsuhata, M., Shimizu, I., Ono, M. (2008a) Diploid male production in a rare and locally distributed bumblebee, Bombus florilegus (Hymenoptera, Apidae). Insectes Soc. 55, 43–50CrossRefGoogle Scholar
  40. Takahashi, J., Itoh, M., Shimizu, I., Ono, M. (2008b) Male parentage and queen mating frequency in the bumblebee Bombus ignitus (Hymenoptera: Bombinae). Ecol. Res. 23, 937–942CrossRefGoogle Scholar
  41. Walsh, P.S., Metzger, D.A., Higuchi, R. (1991) Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10, 506–513PubMedGoogle Scholar
  42. Williams, P.H. (1998) An annotated checklist of bumble bees with an analysis of patterns of description (Hymenoptera: Apidae, Bombini). Bull. Br. Mus. Nat. Hist. (Ent.) 67, 79–152Google Scholar

Copyright information

© INRA, DIB-AGIB and Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Anett Huth-Schwarz
    • 1
    Email author
  • Adolfo León
    • 2
  • Rémy Vandame
    • 3
  • Robin F. A. Moritz
    • 1
  • F. Bernhard Kraus
    • 1
  1. 1.Institut für BiologieMartin-Luther-Universität Halle-WittenbergHalle/SaaleGermany
  2. 2.Universidad de Ciencias y Artes de Chiapas, Tuxtla GutiérrezChiapasMexico
  3. 3.El Colegio de la Frontera Sur, San Cristóbal de las CasasChiapasMexico

Personalised recommendations