Advertisement

Apidologie

, Volume 42, Issue 4, pp 533–542 | Cite as

Characteristics of honey bee colonies (Apis mellifera) in Sweden surviving Varroa destructor infestation

  • Barbara Locke
  • Ingemar Fries
Original article

Abstract

A population of European honey bees (Apis mellifera) surviving Varroa destructor mite infestation in Sweden for over 10 years without treatment, demonstrate that a balanced host–parasite relationship may evolve over time. Colony-level adaptive traits linked to Varroa tolerance were investigated in this population to identify possible characteristics that may be responsible for colony survival in spite of mite infestations. Brood removal rate, adult grooming rate, and the mite distribution between brood and adults were not significantly different in the untreated population compared with treated control colonies. However, colony size and the reproductive success of the mite were significantly reduced in surviving colonies compared with control colonies. Our data suggest that colony-level adaptive traits may limit mite population growth by reducing mite reproduction opportunities and also by suppressing the mite reproductive success.

Keywords

Varroa destructor Apis mellifera natural selection tolerance host–parasite interaction 

Notes

Acknowledgments

Åke Lyberg is thanked for providing excellent field sites and beekeeping support. Financial support was provided by the Montagu Foundation Switzerland, within the SAVE project, the EU-funded 7th Framework project BEE DOC, Grant Agreement 244956, and Jordbruksverket for beekeeping and maintaining the original population of bees.

Caractéristiques des colonies d’abeilles (Apis mellifera) en Suède survivant à une infestation deVarroa destructor.

Varroa destructor / Apis mellifera / sélection naturelle / intéraction hôte-parasite / adaptation

Eigenschaften von Bienenvölkern (Apis mellifera) in Schweden, dieVarroa destructorInfektionen überleben.

Varroa destructor / Apis mellifera / Natürliche Selektion / Toleranz / Wirt-Parasit Wechselwirkung

References

  1. Allen, M., Ball, B. (1996) The incidence and world distribution of honey bee viruses. BeeWorld. 77, 141–162Google Scholar
  2. Allsopp, M. (2006) Analysis of Varroa destructor infestation of southern African honey beepopulations. MS Thesis, University of Pretoria, Pretoria, South AfricaGoogle Scholar
  3. Allsopp, M., Govan, V., Davison, S. (1997) Bee health report: Varroa in South Africa. Bee World. 78, 171–174Google Scholar
  4. Bogdanov, S., Kilchenmann, V., Imdorf, A. (1998) Acaricide residues in some bee products. J. Apic. Res. 37, 57–67Google Scholar
  5. Bienefeld, K., Zautke, F., Pronin, D., Mazeed, A. (1999) Recording the proportion of damaged Varroa jacobsoni Oud. in the debris of honey bee colonies. Apidologie 30, 249–256CrossRefGoogle Scholar
  6. Boecking, O., Spivak, M. (1999) Behavioural defences of honey bees against Varroa jacobsoni Oud. Apidologie 30, 141–158CrossRefGoogle Scholar
  7. Boot, W.J., Calis, J.N.M., Beetsma, J. (1993) Invasion of Varroa jacobsoni into honey bee brood cells: a matter of chance or choice? J. Apic. Res. 32, 167–174Google Scholar
  8. Büchler, R., Berg, S., Le Conte, Y. (2010) Breeding for resistance to Varroa destructor in Europe. Apidologie 41, 393–408CrossRefGoogle Scholar
  9. Calis, J.N.M., Fries, I., Ryrie, S.C. (1999) Population modelling of Varroa jacobsoni Oud. Apidologie 30, 111–124CrossRefGoogle Scholar
  10. Charrièr, J.D., Imdorf, A. (2002) Oxalic acid treatment by trickling against Varroa destructor: recommendations for use in central Europe and under temperate climate conditions. Bee World 82, 51–60Google Scholar
  11. Corrêa-Marques, H., De Jong, D. (1998) Uncapping of worker bee brood, a component of the hygienic behaviour of Africanized honey bees against the mite Varroa jacobsoni Oud. Apidologie 29, 283–289CrossRefGoogle Scholar
  12. Crawley, M.J. (2002) Statistical computing: an introduction to data analysis using S- Plus. Wiley, ChichesterGoogle Scholar
  13. Davis, A.R. (2009) Regular dorsal dimples on Varroa destructor—damage symptoms or developmental origin? Apidologie 40, 151–162CrossRefGoogle Scholar
  14. De Jong, D., Soares, A.E.E. (1997) An isolated population of Italian bees that has survived Varroa jacobsoni infestation without treatment for over 13 years. Am. Bee J. 137, 742–745Google Scholar
  15. De Jong, D., De Andrea Roma, D., Gonclaves, L.S. (1982) A comparative analysis of shaking solutions for the detection of Varroa jacobsoni on adult honey bees. Apidologie 13, 297–304CrossRefGoogle Scholar
  16. Evans, J.D., Aronstein, K., Chen, Y.P., Hetru, C., Imler, J.-L., Jiang, H., Kanost, M., Thompson, G.J., Zou, Z., Hultmark, D. (2006) Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 15, 645–656PubMedCrossRefGoogle Scholar
  17. Fries, I., Bommarco, R. (2007) Possible host-parasite adaptations in honey bees infested by Varroa destructor mites. Apidologie 38, 525–533CrossRefGoogle Scholar
  18. Fries, I., Camazine, S. (2001) Implications of horizontal and vertical pathogen transmission for honey bee epidemiology. Apidologie 32, 199–214CrossRefGoogle Scholar
  19. Fries, I., Aarhus, A., Hansen, H., Korpela, S. (1991a) Comparisons of diagnostic methods for detection of Varroa jacobsoni in honey bee (Apis mellifera) colonies at low infestation levels. Exp. Appl. Acarol. 10, 279–287CrossRefGoogle Scholar
  20. Fries, I., Aarhus, A., Hansen, H., Korpela, S. (1991b) Development of early infestations of Varroa jacobsoni in honey bee (Apis mellifera) colonies in cold climates. Exp. Appl. Acarol. 11, 205–214CrossRefGoogle Scholar
  21. Fries, I., Camazine, S., Sneyd, J. (1994) Population dynamics of Varroa jacobsoni: a model and review. Bee World. 75, 5–28Google Scholar
  22. Fries, I., Hansen, H., Imdorf, A., Rosenkranz, P. (2003) Swarming in honey bees (Apis mellifera) and Varroa destructor population development in Sweden. Apidologie 34, 389–397CrossRefGoogle Scholar
  23. Fries, I., Imdorf, A., Rosenkranz, P. (2006) Survival of mite infested (Varroa destructor) honey bee (Apis mellifera) colonies in a Nordic climate. Apidologie 37, 1–7CrossRefGoogle Scholar
  24. Fuchs, S. (1990) Preference for drone brood cells by Varroa jacobsoni Oud. in colonies of Apis mellifera carnica. Apidologie 21, 193–199CrossRefGoogle Scholar
  25. Garrido, C., Rosenkranz, P. (2003) The reproductive program of female Varroa destructor mites is triggered by its host, Apis mellifera. Apidologie 35, 419–430Google Scholar
  26. Garrido, C., Rosekranz, P. (2004) Volatiles of the honey bee larva initiate oogenesis in the parasitic mite Varroa destructor. Chemoecology 14, 193–197Google Scholar
  27. Harbo, J.R., Harris, J.W. (2005) Suppressed mite reproduction explained by the behaviour of adult bees. J. Apic. Res. 44, 21–23Google Scholar
  28. Ibrahim, A., Spivak, M. (2006) The relationship between hygienic behaviour and suppression of mite reproduction as honey bee (Apis mellifera) mechanisms of resistance to Varroa destructor. Apidologie 37, 31–40CrossRefGoogle Scholar
  29. Imdorf, A., Bühlmann, G., Gerig, L., Kilchenmann, V., Wille, H. (1987) Überprüfung der Schätzmethode zur Ermittlung der Brutfläche und der Anzahl Arbeiterinnen in freifliegenden Bienenvölkern. Apidologie 18, 137–146CrossRefGoogle Scholar
  30. Imdorf, A., Kilchenmann, V., Maquelin, C. (1990) Optimal Ameisensäureanwendung. Schweiz. Bienenztg. 113, 378–385Google Scholar
  31. Imdorf, A., Bogdanov, S., Ibáñez, O.R., Calderone, N.W. (1999) Use of essential oils for the control of Varroa jacobsoni in honey bee colonies. Apidologie 30, 209–228CrossRefGoogle Scholar
  32. Kefuss, J., Vanpouke, J., Ducos De Lahitte, J., Ritter, W. (2004) Varroa tolerance in France of Intermissa Bees from Tunisia and their naturally mated descendants: 1993–2004. Am. Bee J. 144, 563–568Google Scholar
  33. Le Conte, Y., de Vaublanc, G., Crauser, D., Jeanne, F., Rousselle, J.-C., Bécard, J.-M. (2007) Honey bee colonies that have survived Varroa destructor. Apidologie 38, 566–572CrossRefGoogle Scholar
  34. Littell, R.C., Milliken, G.A., Stroup, W.W., Wolfinger, R.D. (1996) SAS system for mixed models. SAS, CaryGoogle Scholar
  35. Martin, S.J. (1994) Ontogenesis of the mite Varroa jacobsoni Oud. in worker brood of the honeybee Apis mellifera L. under natural conditions. Exp. Appl. Acarol. 18, 87–100CrossRefGoogle Scholar
  36. Martin, S.J. (2001) The role of Varroa and viral pathogens in the collapse of honeybee colonies: a modeling approach. J. Appl. Ecol. 38, 1082–1093CrossRefGoogle Scholar
  37. Martin, S.J., Medina, L. (2004) Africanized honeybees have unique tolerance to Varroa mites. Trends Parasitol. 20, 112–114PubMedCrossRefGoogle Scholar
  38. Medina, L., Martin, S.J., Espinosa, L.M., Ratnieks, L.F. (2002) Reproduction of Varroa destructor in worker brood of Africanized honey bees (Apis mellifera). Exp. Appl. Acarol. 27, 79–88PubMedCrossRefGoogle Scholar
  39. Millani, N., Della, V.G., Nazzi, F. (2004) (Z)-8-Heptadecene reduces the reproduction of Varroa destructor in brood cells. Apidologie 35, 265–274CrossRefGoogle Scholar
  40. Mondragon, L., Martin, S.J., Vandame, R. (2006) Mortality of mite offspring: a major component of Varroa destructor resistance in a population of Africanized bees. Apidologie 37, 67–74CrossRefGoogle Scholar
  41. Moosbeckhofer, R. (1992) Beobachtungen zum Auftreten beschädigter Varroamilben innatürlichen Totenfall bei Völkern von Apis mellifera carnica. Apidologie 23, 523–531CrossRefGoogle Scholar
  42. Moretto, G., Goncalves, L.S., De Jong, D. (1995) Analysis of the F1 generation, descendants of Africanized bee colonies with differing defense abilities against the mite Varroa jacobsoni. Rev. Brazil. Genet. 18, 177–179Google Scholar
  43. Nordström, S., Fries, I., Aarhus, A., Hansen, H., Korpela, S. (1999) Virus infections in Nordic honey bee colonies with no, low or severe Varroa jacobsoni infestations. Apidologie 30, 475–484CrossRefGoogle Scholar
  44. Palacio, M.A., Figini, E.E., Ruffinengo, S.R., Rodriguez, E.M., del Hoyo, M.L., Bedascarrasbure, E.L. (2000) Changes in a population of Apis mellifera L. selected for hygienic behavior and its relation to brood disease tolerance. Apidologie 31, 471–478CrossRefGoogle Scholar
  45. Rath, W. (1999) Co-adaptation of Apis cerana Fabr. and Varroa jacobsoni Oud. Apidologie 20, 339–343Google Scholar
  46. Rinderer, T.E., de Guzman, L.I., Delatte, G.T., Stelzer, J.A., Lancaster, V.A., Kuznetsov, V., Beaman, L., Watts, R., Harris, J.W. (2001) Resistance to the parasitic mite Varroa destructor in honey bees from far-eastern Russia. Apidologie 32, 381–394CrossRefGoogle Scholar
  47. Rinderer, T.E., Harris, J.W., Hunt, G.J., de Guzman, L.I. (2010) Breeding for resistance to Varroa destructor in North America. Apidologie 21, 409–424CrossRefGoogle Scholar
  48. Rosenkranz, P. (1999) Honey bee (Apis mellifera L.) tolerance to Varroa jacobsoni Oud. in South America. Apidologie 30, 159–172CrossRefGoogle Scholar
  49. Rosenkranz, P., Engels, W. (1994) Infertility of Varroa jacobsoni females after invasion into Apis mellifera worker brood as a tolerance factor against varroatosis. Apidologie 25, 402–411CrossRefGoogle Scholar
  50. Rosenkranz, P., Fries, I., Boecking, O., Stürmer, M. (1997) Damaged Varroa mites in the debris of honey bee (Apis mellifera L.) colonies with and without hatching brood. Apidologie 28, 427–437CrossRefGoogle Scholar
  51. Rosenkranz, P., Frey, E., Odemer, R., Mougel, F., Solignac, M., Locke, B. (2009) Variance of the reproduction of the parasitic mite Varroa destructor and its significance for host resistance at the individual level. Abstract 41. Apimondia congress, 15 20.09.2009, Montpellier, 96Google Scholar
  52. Rosenkranz, P., Aumeier, P., Ziegelmann, B. (2010) Biology and control of Varroa destructor. J. Invert. Pathol. 103, 96–119CrossRefGoogle Scholar
  53. Sammataro, D., Untalan, P., Guerrero, F., Finley, J. (2005) The resistance of Varroa mites (Acari: Varroidae) to acaricides and the presence of esterase. Int. J. Acarol. 31, 67–74CrossRefGoogle Scholar
  54. Seeley, T.D. (2007) Honey bees of the Arnot Forest: a population of feral colonies persisting with Varroa destructor in the northeastern United States. Apidologie 38, 19–29CrossRefGoogle Scholar
  55. Solignac, M., Cornuet, J.M., Vautrin, D., Le Conte, Y., Anderson, D., Evans, J., Cros-Arteil, S., Navajas, M. (2005) The invasive Korean and Japan types of Varroa destructor, ectoparasitic mite of the Western honeybee (Apis mellifera), are two partly isolated clones. Proc. R. Soc. B. 272, 411–419PubMedCrossRefGoogle Scholar
  56. Spivak, M. (1996) Honey bee hygienic behaviour and defense against Varroa jacobsoni. Apidologie 27, 245–260CrossRefGoogle Scholar
  57. Spivak, M., Reuter, G.S. (2001) Varroa destructor infestation in untreated honey bee (Hymenoptera:Apidae) colonies selected for hygienic behaviour. J. Econ. Entomol. 94, 326–331PubMedCrossRefGoogle Scholar
  58. Sumpter, D.J.T., Martin, S.J. (2004) The dynamics of virus epidemics in Varroa-infested honey bee colonies. J. Anim. Ecol. 73, 51–63CrossRefGoogle Scholar
  59. Tarpy, D.R., Summers, J., Keller, J.J. (2007) Comparison of parasitic mites in Russian hybrid and Italian honey bee (Hymenoptera: Apidae) colonies across three different location in North Carolina. J. Econ. Entomol. 100, 258–266PubMedCrossRefGoogle Scholar
  60. Wallner, K. (1999) Varroacides and their residues in bee products. Apidologie 30, 235–248CrossRefGoogle Scholar

Copyright information

© INRA, DIB-AGIB and Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of EcologySwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations