Advertisement

Apidologie

, 42:499 | Cite as

Geometric morphometrics of the wing as a tool for assigning genetic lineages and geographic origin to Melipona beecheii (Hymenoptera: Meliponini)

  • Tiago Mauricio Francoy
  • Marina Lopes Grassi
  • Vera Lucia Imperatriz-Fonseca
  • William de Jesús May-Itzá
  • José Javier G. Quezada-Euán
Original article

Abstract

The stingless bee Melipona beecheii presents great variability and is considered a complex of species. In order to better understand this species complex, we need to evaluate its diversity and develop methods that allow geographic traceability of the populations. Here we present a fast, efficient, and inexpensive means to accomplish this using geometric morphometrics of wings. We collected samples from Mexico, Guatemala, El Salvador, Nicaragua, and Costa Rica and we were able to correctly assign 87.1% of the colonies to their sampling sites and 92.4% to their haplotype. We propose that geometric morphometrics of the wing could be used as a first step analysis leaving the more expensive molecular analysis only to doubtful cases.

Keywords

Melipona beecheii geometric morphometrics wing morphometrics conservation genetic lineages 

Notes

Acknowledgments

We thank FAPESP (04/15801-0 to V.L.I.F.), CNPq (151947/2007-4 to T.M.F.) and Project 103341 Sep-Conacyt “Conservación de abejas sin aguijón de México” for providing scholarships and financial support. We also thank Dr. Marina Meixer and two anonymous reviewers for helpful comments and Dr. David De Jong for revising the manuscript.

Morphométrie géométrique de l’aile : un outil pour attribuer des lignées génétiques et une origine géographique à Melipona beecheii (Hymenoptera: Meliponini).

Morphométrie / aile / conservation / méthode d’identification / lignée génétique / population

Zusammenfassung – Geometrische Morphometrie des Flügels als Werkzeug für die Zuordnung zu genetischen Linien und geographischem Ursprung bei Melipona beecheii (Hymenoptera:Meliponini) Die stachellose Biene Melipona beecheii spielt in ökologischer, ökonomischer und historischer Hinsicht in ganz Mittelamerika eine bedeutsame Rolle. Die ausgedehnte geographische Verbreitung dieser Biene hat eine bemerkenswerte genetische Variabilität zur Folge, die mit molekularen Methoden gut untersucht werden kann. Heute wird davon ausgegangen, dass es sich bei M. beecheii in Wirklichkeit um einen Artenkomplex handelt, und es werden einige Anstrengungen unternommen, um diese bedrohte Gruppe zu erhalten. Zu diesem Zweck ist eine schnelle und preiswerte Methode zur Bestimmung von Proben aus verschiedenen Regionen des Verbreitungsgebiets wichtig. Wir stellen hier mit der geometrischen Morphometrie der Flügel eine effektive, schnelle und billige Alternative vor, mit der Völker von M. beecheii einer genetischen Linie zugeordnet werden können und darüber hinaus ihr geographischer Ursprungsort ermittelt werden kann. Wir haben dazu Proben im gesamten geographischen Verbreitungsgebiet der Art gesammelt und waren auf der Basis von Flügelmerkmalen in der Lage, 87.1% der Proben den Sammelorten sowie 92.4% dem korrekten genetischen Haplotyp zuzuordnen. Wir konnten auch bestätigen, dass ein Zusammenhang zwischen den morphologischen Distanzen der verschiedenen Gruppen und den geographischen Distanzen zwischen den Sammelorten besteht, was darauf hindeutet, dass zwischen den Populationen Isolation durch Distanz besteht. Auf der Grundlage dieser Ergebnisse schlagen wir vor, dass als ein erster Schritt in der Identifizierung unbekannter Proben die geometrische Morphometrie der Flügel durchgeführt werden sollte und damit wesentlich kostspieligeren molekularen Analysen auf zweifelhafte Fälle beschränkt bleiben können.

Melipona beecheii / geometrische Morphometrie/ Flügelmorphometrie / Erhaltung / genetische Linien

Supplementary material

13592_2011_13_MOESM1_ESM.doc (115 kb)
ESM 1 (DOC 115 kb)

References

  1. Aizen, M.A., Harder, L.D. (2009) The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19, 915–918PubMedCrossRefGoogle Scholar
  2. Aizen, M.A., Garibaldi, L.A., Cunningham, S.A., Klein, A.M. (2009) How much does agriculture depend on pollinators? Lessons from long term trends in crop production. Ann. Bot. 103, 1579–1588PubMedCrossRefGoogle Scholar
  3. Biesmeijer, J.C., Roberts, S.P., Reemer, M., Ohlemueller, R., Edwards, M., Peeters, T., Schaffers, A., Potts, S.G., Kleukers, R., Thomas, C.D., Settele, J., Kunin, W.E. (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354PubMedCrossRefGoogle Scholar
  4. Bischoff, I., Schroeder, S., Misof, B. (2009) Differentiation and range expansion of North American squash bees Peponapis pruinosa (Apidae: Apiformes) populations assessed by geometric wing morphometry. Ann. Entomol. Soc. Am. 102, 60–69CrossRefGoogle Scholar
  5. Bookstein, F.L. (1991) Morphometric tools for landmark data. Cambridge University Press, CambridgeGoogle Scholar
  6. Brown, M.J.F., Paxton, R.J. (2009) The conservation of bees: a global perspective. Apidologie 40, 410–416CrossRefGoogle Scholar
  7. Byrne, A., Fitzpatrick, Ú. (2009) Bee conservation policy at the global, regional and national levels. Apidologie 40, 194–211CrossRefGoogle Scholar
  8. De la Rúa, P., de May-Itzá, W.J., Serrano, J., Quezada-Euán, J.J.G. (2007) Sequence and RFLP analysis of the ITS2 ribosomal DNA in two Neotropical social bees, Melipona beecheii and Melipona yucatanica (Apidae: Meliponini). Insect. Soc. 54, 418–423CrossRefGoogle Scholar
  9. Estoup, A., Garnery, L., Solignac, M., Cornuet, J.M. (1995) Microsatellite variation in honeybee (Apis mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models. Genetics 140, 679–695PubMedGoogle Scholar
  10. Franck, P., Garnery, L., Solignac, M., Cornuet, J.M. (2000) Molecular confirmation of a fourth lineage in honeybees from the Near East. Apidologie 31, 167–180CrossRefGoogle Scholar
  11. Francisco, F.O., Nunes-Silva, P., Francoy, T.M., Wittmann, D., Imperatriz-Fonseca, V.L., Arias, M.C., Morgan, E.D. (2008) Morphometrical, biochemical and molecular tools for assessing biodiversity. An example in Plebeia remota (Holmberg, 1903) (Apidae, Meliponini). Insect. Soc. 55, 231–237CrossRefGoogle Scholar
  12. Francoy, T.M., Wittmann, D., Drauschke, M., Müller, S., Steinhage, V., Bezerra-Laure, M.A.F., De Jong, D., Gonçalves, L.S. (2008) Identification of Africanized honey bees through wing morphometrics: two fast and efficient procedures. Apidologie 39, 488–494CrossRefGoogle Scholar
  13. Francoy, T.M., Silva, R.A.O., Nunes-Silva, P., Menezes, C., Imperatriz-Fonseca, V.L. (2009a) Gender identification of five genera of stingless bees (Apidae, Meliponini) based on wing morphology. Genet. Mol. Res. 8, 207–214PubMedCrossRefGoogle Scholar
  14. Francoy, T.M., Wittmann, D., Steinhage, V., Drauschke, M., Müller, S., Cunha, D.R., Nascimento, A.M., Figueiredo, V.L.C., Simões, Z.L.P., De Jong, D., Arias, M.C., Gonçalves, L.S. (2009b) Morphometric and genetic changes in a population of Apis mellifera after 34 years of Africanization. Genet. Mol. Res. 8, 709–717PubMedCrossRefGoogle Scholar
  15. Freitas, B.M., Imperatriz-Fonseca, V.L., Medina, L.M., Kleinert, A.M.P., Galetto, L., Nates-Parra, G., Quezada-Euán, J.J.G. (2009) Diversity, threats and conservation of native bees in the neotropics. Apidologie 40, 332–346CrossRefGoogle Scholar
  16. González-Acereto, J.A., Quezada-Euán, J.J.G., Medina-Medina, L.A. (2006) New perspectives for stingless beekeeping in the Yucatan: results of an integral program to rescue and promote the activity. J. Apic. Res. 45, 234–239CrossRefGoogle Scholar
  17. Kandemir, I., Moradi, M.G., Özden, B., Özkan, A. (2009) Wing geometry as a tool for studying the population structure of dwarf honey bees (Apis florea Fabricius 1876) in Iran. J. Apic. Res. 48, 238–246CrossRefGoogle Scholar
  18. Klein, A.M., Vaissière, B., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremer, C., Tscharntcke, T. (2007) Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. Lond. B. 274, 303–313CrossRefGoogle Scholar
  19. Kremen, C., Ricketts, T. (2000) Global perspectives on pollination disruptions. Conserv. Biol. 14, 1226–1228CrossRefGoogle Scholar
  20. Kremen, C., Williams, N.M., Thorp, R.W. (2002) Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. USA 99, 16812–16816PubMedCrossRefGoogle Scholar
  21. May-Itzá, W.J., Quezada-Euán, J.J.G., Enriquez, E., De la Rua, P. (2009) Intraspecific variation in the stingless bee Melipona beecheii assessed with PCR-RFLP of the ITS1 ribosomal DNA. Apidologie 40, 549–555CrossRefGoogle Scholar
  22. Mendes, M.F.M., Francoy, T.M., Nunes-Silva, P., Menezes, C., Imperatriz-Fonseca, V.L. (2007) Intra-populational variability of Nannotrigona testaceicornis Lepeletier 1836 (Hymenoptera, Meliponini) using relative warp analysis. Biosci. J. 23, 147–152Google Scholar
  23. Monteiro, L.R., Reis, S.F. (1999) Princípios de Morfometria Geométrica, Holos Editora, Ribeirão PretoGoogle Scholar
  24. Morrone, J.J. (2006) Biogeographic areas and transition zones of Latin America and the Caribbean Islands based on panbiogeographic and cladistic analyses of the entomofauna. Annu. Rev. Entomol. 51, 467–494PubMedCrossRefGoogle Scholar
  25. Nogueira-Neto, P. (1997) Vida e criação de abelhas indígenas sem ferrão, Nogueirapis, São PauloGoogle Scholar
  26. Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O., Kunin, W.E. (2010) Global pollinator declines: trends, impacts and drivers. Trends. Ecol. Evol. doi: 10.1016/j.tree.2010.01.007 PubMedGoogle Scholar
  27. Quezada-Euán, J.J.G., Paxton, R.J., Palmer, K.A., de May-Itzá, W.J., Tay, W.T., Oldroyd, B.P. (2007) Morphological and molecular characters reveal differentiation in a Neotropical social bee, Melipona beecheii (Apidae: Meliponini). Apidologie 38, 247–258CrossRefGoogle Scholar
  28. Quezada-Euán, J.J.G., López-Velasco, A., Pérez-Balam, J., Moo-Valle, H., Velazquez-Madrazo, A., Paxton, R.J. (2011) Body size differs in workers produced across time and is associated with variation in the quantity and composition of larval food in Nannotrigona perilampoides (Hymenoptera, Meliponini). Insect. Soc. 58, 31–38CrossRefGoogle Scholar
  29. Rodrigues, F.M., Diniz-Filho, J.A.F. (1998) Hierarchical structure of genetic distances: effects of matrix size, spatial distribution and correlation structure among gene frequencies. Gen. Mol. Biol. 21, 233–240CrossRefGoogle Scholar
  30. Rohlf, F.J. (1989) NTSYS-PC: numerical taxonomy and multivariate analysis system. Exeter Publishing Co., New YorkGoogle Scholar
  31. Rohlf, F.J. (2005) tpsDig2, version 2.04, Department of Ecology and Evolution, State University of New York, Stony BrookGoogle Scholar
  32. Ruttner, F. (1988) Biogeography and taxonomy of honeybees. Springer, BerlinGoogle Scholar
  33. StatSoft Inc (2001) STATISTICA (data analysis software system), version 6. www.statsoft.com
  34. Tamura, K., Dudley, J., Nei, M., Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599PubMedCrossRefGoogle Scholar
  35. Tofilsky, A. (2008) Using geometric morphometrics and standard morphometry to discriminate three honey bee subspecies. Apidologie 39, 558–563CrossRefGoogle Scholar
  36. Whitfield, C.W., Behura, S.K., Berlocher, S.H., Clark, A.G., Johnston, J.S., Sheppard, W.S., Smith, D.R., Suarez, A.V., Weaver, D., Tsutsui, N.D. (2006) Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera. Science 314, 642–645PubMedCrossRefGoogle Scholar
  37. Winfree, R., Aguilar, R., Vásquez, D.P., LeBuhn, G., Aizen, M.A. (2009) A meta-analysis of bees’ responses to anthropogenic disturbances. Ecology 90, 2068–2076PubMedCrossRefGoogle Scholar

Copyright information

© INRA, DIB-AGIB and Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Tiago Mauricio Francoy
    • 1
  • Marina Lopes Grassi
    • 2
  • Vera Lucia Imperatriz-Fonseca
    • 3
  • William de Jesús May-Itzá
    • 4
  • José Javier G. Quezada-Euán
    • 4
  1. 1.Escola de Artes, Ciências e HumanidadesUniversidade de São PauloSão PauloBrazil
  2. 2.Faculdade de Filosofia, Ciências e Letras de Ribeirão PretoUniversidade de São PauloSão PauloBrazil
  3. 3.Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
  4. 4.Departamento de Apicultura, Campus de Ciencias Biológicas y AgropecuariasUniversidad Autónoma de YucatánMéridaMexico

Personalised recommendations