, Volume 42, Issue 4, pp 508–518 | Cite as

Food manipulation in honeybees induces physiological responses at the individual and colony level

  • Laura Evins Willard
  • Ashley Maria Hayes
  • Megan Ann Wallrichs
  • Olav RueppellEmail author
Original article


Apis mellifera experiences large population declines in the USA and honeybee health is affected by many, potentially interacting factors that need to be addressed through a variety of approaches. In this context, we evaluated the impact of nutritional manipulations on worker physiology and colony demography. Specifically, we manipulated protein availability by feeding colonies on royal jelly, low-quality pollen, or regular pollen stores. After acclimation to these treatments, experimental cohorts of workers were introduced and later assessed with regards to life expectancy, protein content, and intestinal stem cell proliferation. We also monitored their hives for the amount of workers, brood, and pollen trapped in front of the hive entrances. Workers that fed on royal jelly showed a reduced rate of intestinal stem cell proliferation at nurse bee age. Total soluble protein content of individuals and adult worker lifespan were not systematically affected. However, we cannot exclude an auxiliary role of poor nutrition to declining bee health by weakening the intestinal epithelium. In contrast to the weak experimental effects on individual variables, the brood production differed drastically among the experimental hives. Although not yet replicated, this observation might indicate that hive demographic plasticity rather than individual plasticity is important for acclimation to different food regimes.


intestinal stem cells pollen nutrition demographic plasticity mortality 



We thank Kaitlin Clinnin for practical support at the early stages of this experiment. We would also like to acknowledge the financial support of the North American Pollinator Protection Campaign and the Agriculture and Food Research Initiative of the USDA National Institute of Food and Agriculture, grant number #2010-65104-20533.

La manipulation des sources de nourriture chez les abeilles provoque des réponses physiologiques au niveau de l’individu et de la colonie.

cellule souche intestinale / pollen/ nutrition / plasticité démographique / mortalité

Zusammenfassung – Physiologische Reaktionen auf Manipulationen des Nahrungsangebots von Individuen und Völkern. Die aktuellen Gesundheitsprobleme der Honigbienen sind vermutlich auf mehrere Faktoren zurückzuführen und daher werden vielfältige Ansätze verfolgt. In diesem Zusammenhang wurden Bienen in dieser Studie am Polleneintrag in den Stock gehindert und stattdessen entweder mit minderwertigen Pollen oder mit frischem Futtersaft (Gelee Royale) gefüttert. Nach einer Eingewöhnungsphase, wurden die zu untersuchenden, jungen Bienen in die Stöcke gegeben und später auf Proteingehalt und Replikation der Stammzellen im Darm untersucht. Zudem wurden die Koloniegrössen, Brutmengen, und die Masse des abgefangenen Pollens der Kolonien aufgezeichnet. Die experimentelle Manipulation der Ernährung im Stock wirkte sich auf individueller und Stock-Ebene aus. Die individuelle Mortalität von Arbeiterinnen und deren interne Proteintiter wurden allerdings kaum beeinträchtigt, aber die Futtersaftdiät führte im Ammenstadium zu einer signifikanten Reduzierung der Zellteilungsraten von Stammzellen in der Darmwand. Die Ernährungsqualität scheint die Darmwand zu beeinflussen. Am Ausgeprägtesten waren jedoch die Unterschiede bei der Brutmenge zwischen den drei Völkern. Dies könnte darauf hinweisen, dass die demografische Plastizität eines Bienenvolkes stärker ist als die individuelle physiologische Plastizität.

Intestinale Stammzellen / Pollen / Ernährung / Demographische Plastizität / Mortalität


  1. Allen, M.D., Jeffree, E.P. (1956) The infuence of stored pollen and of colony size on the brood rearing of honeybees. Ann. Appl. Biol. 44, 649–656CrossRefGoogle Scholar
  2. Amdam, G.V., Omholt, S.W. (2002) The regulatory anatomy of honeybee lifespan. J. Theor. Biol. 216, 209–228PubMedCrossRefGoogle Scholar
  3. Amdam, G.V., Aase, A.L.T.O., Seehuus, S.C., Fondrk, M.K., Norberg, K., Hartfelder, K. (2005) Social reversal of immunosenescence in honey bee workers. Exp. Gerontol. 40, 939–947PubMedCrossRefGoogle Scholar
  4. Amdam, G.V., Rueppell, O., Fondrk, M.K., Page, R.E., Nelson, C.M. (2009) The nurse's load: early-life exposure to brood-rearing affects behavior and lifespan in honey bees (Apis mellifera). Exp. Gerontol. 44, 467–471PubMedCrossRefGoogle Scholar
  5. Bitondi, M.M.G., Simoes, Z.L.P. (1996) The relationship between level of pollen in the diet, vitellogenin and juvenile hormone titres in Africanized Apis mellifera workers. J. Apic. Res. 35, 27–36Google Scholar
  6. Blaschon, B., Guttenberger, H., Hrassnigg, N., Crailsheim, K. (1999) Impact of bad weather on the development of the broodnest and pollen stores in a honeybee colony (Hymenoptera: Apidae). Entomol. Gen. 24, 49–60Google Scholar
  7. Crailsheim, K. (1990a) Protein-synthesis in the honeybee (Apis mellifera L) and trophallactic distribution of jelly among imagos in laboratory experiments. Zool. Jahrb. Allg. Zool. 94, 303–312Google Scholar
  8. Crailsheim, K. (1990b) The protein balance of the honey bee worker. Apidologie 21, 417–429CrossRefGoogle Scholar
  9. Crailsheim, K., Schneider, L.H.W., Hrassnigg, N., Buhlmann, G., Brosch, U., Gmeinbauer, R., Schoffmann, B. (1992) Pollen consumption and utilization in worker honeybees (Apis mellifera carnica)—dependence on individual age and function. J. Insect. Physiol. 38, 409–419CrossRefGoogle Scholar
  10. Davila, J.C., Cezar, G.G., Thiede, M., Strom, S., Miki, T., Trosko, J. (2004) Use and application of stem cells in toxicology. Toxicol. Sci. 79, 214–223PubMedCrossRefGoogle Scholar
  11. DeGrandi-Hoffman, G., Wardell, G., Ahumada-Segura, F., Rinderer, T., Danka, R., Pettis, J. (2008) Comparisons of pollen substitute diets for honey bees: consumption rates by colonies and effects on brood and adult populations. J. Apic. Res. 47, 265–270CrossRefGoogle Scholar
  12. Eischen, F.A., Rothenbuhler, W.C., Kulincevic, J.M. (1982) Length of life and dry weight of worker honeybees reared in colonies with different worker–larva ratios. J. Apic. Res. 21, 19–25Google Scholar
  13. Ellis, J.D., Munn, P.A. (2005) The worldwide health status of honey bees. Bee World 86, 88–101Google Scholar
  14. Fewell, J.H., Winston, M.L. (1992) Colony state and regulation of pollen foraging in the honey-bee, Apis mellifera L. Behav. Ecol. Sociobiol. 30, 387–393CrossRefGoogle Scholar
  15. Fewell, J.H., Winston, M.L. (1996) Regulation of nectar collection in relation to honey storage levels by honey bees, Apis mellifera. Behav. Ecol. 7, 286–291CrossRefGoogle Scholar
  16. Haydak, M.H. (1937) The influence of a pure carbohydrate diet on newly emerged honey bees. Ann. Entomol. Soc. Am. 30, 258–262Google Scholar
  17. Haydak, M.H. (1970) Honey bee nutrition. Ann. Rev. Entomol. 15, 143–156CrossRefGoogle Scholar
  18. Johnson, R.M., Evans, J.D., Robinson, G.E., Berenbaum, M.R. (2009a) Changes in transcript abundance relating to colony collapse disorder in honey bees (Apis mellifera). Proc. Nat. Acad. Sci. USA 106, 14790–14795PubMedCrossRefGoogle Scholar
  19. Johnson, R.M., Pollock, H.S., Berenbaum, M.R. (2009b) Synergistic interactions between in-hive miticides in Apis mellifera. J. Econ. Entomol. 102, 474–479PubMedCrossRefGoogle Scholar
  20. Mattila, H.R., Otis, G.W. (2006a) Effects of pollen availability and Nosema infection during the spring on division of labor and survival of worker honey bees (Hymenoptera: Apidae). Environ. Entomol. 35, 708–717CrossRefGoogle Scholar
  21. Mattila, H.R., Otis, G.W. (2006b) The effects of pollen availability during larval development on the behaviour and physiology of spring-reared honey bee workers. Apidologie 37, 533–546CrossRefGoogle Scholar
  22. Maurizio, A. (1950) The influence of pollen feeding and brood rearing on the length of life and physiological condition of the honeybee. Bee World 31, 9–12Google Scholar
  23. Mayack, C., Naug, D. (2009) Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. J. Invert. Pathol. 100, 185–188CrossRefGoogle Scholar
  24. Morse, R.A., Calderone, N.W. (2000) The value of honey bees as pollinators of US crops in 2000. Bee Culture 128, 1–15Google Scholar
  25. Naug, D., Gibbs, A. (2009) Behavioral changes mediated by hunger in honeybees infected with Nosema ceranae. Apidologie 40, 595–599CrossRefGoogle Scholar
  26. Nelson, C.M., Ihle, K.E., Fondrk, M.K., Page, R.E. Jr., Amdam, G.V. (2007) The gene vitellogenin has multiple coordinating effects on social organization. PLoS. Biol. 5, e62PubMedCrossRefGoogle Scholar
  27. Ohlstein, B., Spradling, A. (2006) The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439, 470–474PubMedCrossRefGoogle Scholar
  28. Page, R.E., Erber, J. (2002) Levels of behavioral organization and the evolution of division of labor. Naturwissenschaften 89, 91–106PubMedCrossRefGoogle Scholar
  29. Rando, T.A. (2006) Stem cells, ageing and the quest for immortality. Nature 441, 1080–1086PubMedCrossRefGoogle Scholar
  30. Rueppell, O., Fondrk, M.K., Page, R.E. Jr. (2005) Biodemographic analysis of male honey bee mortality. Aging Cell 4, 13–19PubMedCrossRefGoogle Scholar
  31. Rueppell, O., Bachelier, C., Fondrk, M.K., Page, R.E. Jr. (2007) Regulation of life history determines lifespan of worker honey bees (Apis mellifera L.). Exp. Gerontol. 42, 1020–1032PubMedCrossRefGoogle Scholar
  32. Rueppell, O., Linford, R., Gardner, P., Coleman, J., Fine, K. (2008) Aging and demographic plasticity in response to experimental age structures in honeybees (Apis mellifera L). Behav. Ecol. Sociobiol. 62, 1621–1631PubMedCrossRefGoogle Scholar
  33. Rueppell, O., Kaftanouglu, O., Page, R.E. (2009) Honey bee (Apis mellifera) workers live longer in small than in large colonies. Exp. Gerontol. 44, 447–452PubMedCrossRefGoogle Scholar
  34. Sagili, R.R., Pankiw, T. (2007) Effects of protein-constrained brood food on honey bee (Apis mellifera L.) pollen foraging and colony growth. Behav. Ecol. Sociobiol. 61, 1471–1478CrossRefGoogle Scholar
  35. Sagili, R.R., Pankiw, T., Zhu-Salzman, K. (2005) Effects of soybean trypsin inhibitor on hypopharyngeal gland protein content, total midgut protease activity and survival of the honey bee (Apis mellifera L.). J. Insect. Physiol. 51, 953–957PubMedCrossRefGoogle Scholar
  36. Schippers, M.P., Dukas, R., Smith, R.W., Wang, J., Smolen, K., McClelland, G.B. (2006) Lifetime performance in foraging honeybees: behaviour and physiology. J. Exp. Biol. 209, 3828–3836PubMedCrossRefGoogle Scholar
  37. Schmickl, T., Crailsheim, K. (2001) Cannibalism and early capping: strategy of honeybee colonies in times of experimental pollen shortages. J. Comp. Physiol. A. 187, 541–547PubMedCrossRefGoogle Scholar
  38. Schulz, D.J., Huang, Z.Y., Robinson, G.E. (1998) Effects of colony food shortage on behavioral development in honey bees. Behav. Ecol. Sociobiol. 42, 295–303CrossRefGoogle Scholar
  39. vanEngelsdorp, D., Hayes, J. Jr., Underwood, R.M., Pettis, J. (2008) A survey of honey bee colony losses in the US Fall 2007 to Spring 2008. PLoS. ONE 3, e4071CrossRefGoogle Scholar
  40. vanEngelsdorp, D., Evans, J.D., Saegerman, C., Mullin, C., Haubruge, E., Nguyen, B.K., Frazier, M., Frazier, J., Cox-Foster, D., Chen, Y., Underwood, R., Tarpy, D.R., Pettis, J.S. (2009) Colony collapse disorder: a descriptive study. PLoS. ONE 4, e6481PubMedCrossRefGoogle Scholar
  41. Vinson, S.B. (1985) Economic impact and control of social insects. Praeger Publishers, New YorkGoogle Scholar
  42. Waddington, K.D., Nelson, M., Page, R.E. Jr. (1998) Effects of pollen quality and genotype on the dance of foraging honey bees. Anim. Behav. 56, 35–39PubMedCrossRefGoogle Scholar
  43. Ward, K.N., Coleman, J., Clittin, K., Fahrbach, S.E., Rueppell, O. (2008) Age, caste, and behavior determine the replicative activity of intestinal stem cells in honeybees (Apis mellifera L.). Exp. Gerontol. 43, 430–437CrossRefGoogle Scholar
  44. Winston, M.L. (1987) The biology of the honey bee. Harvard University Press, Cambridge, MassachusettsGoogle Scholar
  45. Zundel, M.A., Basturea, G.N., Deutscher, M.P. (2009) Initiation of ribosome degradation during starvation in Escherichia coli. Rna 15, 977–983PubMedCrossRefGoogle Scholar

Copyright information

© INRA, DIB-AGIB and Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Laura Evins Willard
    • 1
  • Ashley Maria Hayes
    • 1
  • Megan Ann Wallrichs
    • 1
  • Olav Rueppell
    • 1
    Email author
  1. 1.Department of BiologyThe University of North Carolina at GreensboroGreensboroUSA

Personalised recommendations