, Volume 42, Issue 3, pp 401–408 | Cite as

Nectar and pollen sugars constituting larval provisions of the alfalfa leaf-cutting bee (Megachile rotundata) (Hymenoptera: Apiformes: Megachilidae)

  • James H. Cane
  • Dale R. Gardner
  • Philip A. Harrison
Original article


As with most solitary bees, larvae of the alfalfa leaf-cutting bee, Megachile rotundata Fab., eat a diet blended from pollen and nectar of unknown proportions. In this study, we developed protocols to isolate and quantify sugars from larval provision masses. The method removed free amino acids that leach from pollen and confound chromatography, but without autohydrolyzing sucrose. Pollen sugars were a negligible fraction of provision mass sugars. Glucose and fructose constituted about half of the provision fresh weight. Sucrose in alfalfa pollen and nectar is absent from the provision, presumably enzymatically hydrolyzed to glucose and fructose in the provision. Provision masses are composed of two to three times more floral equivalents in pollen than nectar. Female M. rotundata, and other solitary bees with pasty provisions, gather proportionally more pollen than nectar compared with the resource needs of colonies of social honeybees and bumblebees.


HPLC Medicago pollinator Apoidea diet 



We are grateful to Don Veirs for able assistance in acquiring and processing alfalfa nectar and larval provisions, to Faye Rutishauser for help with particle counting, and to Terry Wierenga for guidance with HPLC. Theresa Pitts-Singer and John Neff provided thoughtful reviews. Research was funded by the Pacific Northwest Alfalfa Seed Growers Association.

Sucres du nectar et du pollen contenus dans les provisions destinées à l’alimentation des larves chez Megachile rotundata (Hymenoptera: Apiformes: Megachilidae).

HPLC / Medicago / pollinisateur / régime alimentaire / luzerne / Apoidea

Zusammenfassung - Nektar- und Pollenzucker als Komponenten des Larvenfutters der Blattschneiderbiene Megachile rotundata (Hymenoptera: Apiformes: Megachilidae). Wie bei den meisten solitären Bienen erhalten auch die Larven der Blattschneiderbiene Megachile rotundata Fab. eine Diät bestehend aus einer Mischung nicht genau bekannter Anteile von Pollen und Nektar. In der vorliegenden Studie entwickelten wir ein Verfahren zur Isolierung und Quantifizierung der Zucker im Larvenfuttter. Die Methode entfernt aus Pollen herausgelöste freie Aminosäuren, die in der Chromatographie stören können., ohne dass es zur Autohydrolyse von Zuckern kommt. Während Pollenzucker nur einen geringen Anteil der Zuckerfraktion im Larvenfutter von M. rotundata ausmachten, waren Glukose und Fruktose zu etwa 50% im Frischgewicht der Futtermenge vertreten. Sacharose, die in Alfalfapollen und Nektar vorkommt, war im Larvenfutter nicht zu finden, da sie vermutlich bei der Futteraufbereitung enzymatisch in Glukose und Fruktose gespalten wird. Im Vergleich zu Arbeiterinnen der sozialen Honigbienen und Hummeln sammeln Weibchen von M. rotundata, wie auch die anderer solitärer Bienen, die ihre Brut mit einem pastenartigen Brei füttern, proportional mehr Pollen als Nektar von den Futterpflanzen ein. Der flüssige Anteil im Futterbrei garantiert die Verpflegung der ersten drei Larvenstadien der Blattschneiderbienen, während ein zu trockener Futterbrei mit einer erhöhten Larvenmortalität verbunden ist.

HPLC / Medicago / Bestäuber / Apoidea / Diät


  1. Barnes, D.K., Furgala, B. (1978) Nectar characteristics associated with sources of alfalfa germplasm. Crop Sci. 18, 1087–1089CrossRefGoogle Scholar
  2. Bosch, J., Kemp, W.P. (2005) Alfalfa leafcutting bee population dynamics, flower availability, and pollination rates in two Oregon alfalfa fields. J. Econ. Entomol. 98, 1077–1086PubMedCrossRefGoogle Scholar
  3. Bosch, J., Maeta, Y., Rust, R. (2001) A phylogenetic analysis of nesting behavior in the genus Osmia (Hymenoptera: Megachilidae). Ann. Entomol. Soc. Am. 94, 617–627CrossRefGoogle Scholar
  4. Cane, J.H. (2002) Pollinating bees (Hymenoptera: Apiformes) of US alfalfa compared for rates of pod and seed set. J. Econ. Entomol. 95, 22–27PubMedCrossRefGoogle Scholar
  5. Cane, J.H. (2008) A native ground-nesting bee (Nomia melanderi) sustainably managed to pollinate alfalfa across an intensively agricultural landscape. Apidologie. 39, 315–323CrossRefGoogle Scholar
  6. Cane, J.H., Schiffhauer, D., Kervin, L.J. (1996) Pollination, foraging, and nesting ecology of the leaf-cutting bee Megachile (Delomegachile) addenda (Hymenoptera: Megachilidae) on cranberry beds. Ann. Entomol. Soc. Am. 89, 361–367Google Scholar
  7. Echigo, T., Takenaka, T., Ichimira, M. (1973) Effects of chemical constituents in pollen on the process of honey formation. Bull. Fac. Agric. Tamagawa Univ. 13, 1–9Google Scholar
  8. Eggleston, G. (1999) Improved quantitative ion chromatography of industrial sugars: removal of interfering amino acids. Food Chem. 65, 483–491CrossRefGoogle Scholar
  9. Gerber, H.S., Klostermeyer, E.C. (1972) Factors affecting the sex ratio and nesting behavior of the alfalfa leafcutter bee. Washington Agric. Exper. Station Tech. Bull. 73, 1–11Google Scholar
  10. Heinrich, B. (1979) Bumblebee economics. Harvard University Press, CambridgeGoogle Scholar
  11. Herbert Jr., E.W., Shimanuki, H. (1978) Chemical composition and nutritive value of bee-collected and bee-stored pollen. Apidologie 9, 33–40CrossRefGoogle Scholar
  12. Holtkamp, R.H., Morthorpe, K.J., Clift, A.D. (1992) Influence of nectar volume and sugar content on seed set in lucerne. Australian J. Exp. Agric. 32, 713–716CrossRefGoogle Scholar
  13. Inglis, G.D., Goettel, M.S., Sigler, L. (1992) Analysis of alfalfa leafcutter bee (Megachile rotundata) provisions pre- and post-sterilization with propylene oxide. Apidologie 23, 119–132CrossRefGoogle Scholar
  14. Klostermeyer, E.C., Gerber, H.S. (1969) Nesting behavior of Megachile rotundata (Hymenoptera: Megachilidae) monitored with an event recorder. Ann. Entomol. Soc. Am. 62, 1321–1326Google Scholar
  15. Klostermeyer, E.C., Mech Jr., S.J., Rasmussen, W.B. (1973) Sex and weight of Megachile rotundata (Hymenoptera: Megachilidae) progeny associated with provision weights. J. Kansas Entomol. Soc. 46, 536–548Google Scholar
  16. Linskens, H.F., Schrauwen, J. (1969) The release of free amino acids from germinating pollen. Acta. Bot. Neerl. 18, 605–614Google Scholar
  17. Malyshev, S.I. (1935) The nesting habits of solitary bees: a comparative study. EOS (Madrid) Rev. Espanola Entomol. 11, 201–309Google Scholar
  18. May, D.G.K. (1972) Water uptake during larval development of a sweat bee, Augochlora pura (Hymenoptera: Apoidea). J. Kansas Entomol. Soc. 45, 439–449Google Scholar
  19. Pacini, E. (1996) Types and meaning of pollen carbohydrate reserves. Sex Plant Reprod. 9, 362–366CrossRefGoogle Scholar
  20. Pitts-Singer, T.L. (2004) Examination of ‘pollen balls’ in nests of the alfalfa leafcutting bee, Megachile rotundata. J. Apic. Res. 43, 40–46Google Scholar
  21. Pitts-Singer, T.L. (2008) Past and present management of alfalfa bees. In: James, R.R., Pitts-Singer, T.L. (eds.) Bees in agricultural ecosystems, pp. 105–123. Oxford University Press, NYCrossRefGoogle Scholar
  22. Pitts-Singer, T.L., Bosch, J. (2010) Nest establishment, pollination efficiency, and reproductive success of Megachile rotundata (Hymenoptera: Megachilidae) in relation to resource availability in field enclosures. Environ. Entomol. 39, 149–158PubMedCrossRefGoogle Scholar
  23. Roubik, D.W. (1989) Ecology and natural history of tropical bees. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  24. Roulston, T.H., Cane, J.H. (2000) Pollen nutritional content and digestibility for animals. Plant Syst. Evol. 222, 187–209CrossRefGoogle Scholar
  25. Seeley, T.D. (1995) The wisdom of the hive. Harvard University Press, CambridgeGoogle Scholar
  26. Simpson, J., Riedel, I.B.M., Wilding, N. (1968) Invertase in the hypopharyngeal glands of the honeybee. J. Apic. Res. 7, 29–36Google Scholar
  27. Singh, M.B., Knox, B. (1984) Invertases of Lilium pollen. 1.Characterization and activity during in vitro germination. Plant Physiol. 74, 510–515PubMedCrossRefGoogle Scholar
  28. Solberg, Y., Remedios, G. (1980) Chemical composition of pure and bee-collected pollen. Sci. Rep. Agric. Univ. Norway. 59, 1–12Google Scholar
  29. Speranza, A., Calzoni, G.L., Pacini, E. (1997) Occurrence of mono- or disaccharides and polysaccharide reserves in mature pollen grains. Sex Plant Reprod. 10, 110–115CrossRefGoogle Scholar
  30. Stephen, W.P., Bohart, G.E., Torchio, P.F. (1969) The biology and external morphology of bees. Agric. Exp. Sta. Oregon St. Univ, CorvallisGoogle Scholar
  31. Trostle, G., Torchio, P.F. (1994) Comparative nesting behavior and immature development of Megachile rotundata (Fabricius) and Megachile apicalis Spinola (Hymenoptera, Megachilidae). J. Kansas Entomol. Soc. 67, 53–72Google Scholar
  32. Vit, P., Pulcini, P. (1996) Diastase and invertase activities in Meliponini and Trigonini honeys from Venezuala. J. Apic. Res. 35, 57–62Google Scholar
  33. Wightman, J.A., Rogers, V.M. (1978) Growth, energy and nitrogen budgets and efficiencies of the growing larvae of Megachile pacifica (Hymenoptera: Megachilidae). Oecologia 36, 245–257CrossRefGoogle Scholar

Copyright information

© INRA, DIB-AGIB and Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • James H. Cane
    • 1
  • Dale R. Gardner
    • 2
  • Philip A. Harrison
    • 3
  1. 1.USDA-ARS Bee Biology and Systematic LaboratoryUtah State UniversityLoganUSA
  2. 2.USDA-ARS Poisonous Plant Research LaboratoryUtah State UniversityLoganUSA
  3. 3.USDA-ARS Forage and Range Research LaboratoryUtah State UniversityLoganUSA

Personalised recommendations