Advertisement

Apidologie

, Volume 42, Issue 3, pp 364–377 | Cite as

The stability and effectiveness of fumagillin in controlling Nosema ceranae (Microsporidia) infection in honey bees (Apis mellifera) under laboratory and field conditions

  • Mariano Higes
  • María J. Nozal
  • Ana Alvaro
  • Laura Barrios
  • Aranzazu Meana
  • Raquel Martín-Hernández
  • José L. Bernal
  • José Bernal
Original article

Abstract

Honey bees play an important role in food production (honey, pollen etc.), and their pollinating activity is not only essential to maintain world agriculture production but also to ensure biodiversity in different ecosystems. Nosema ceranae is a highly prevalent worldwide pathogen for honey bees that has been related to colony losses. A commercial formulation that contains fumagillin dicyclohexylamine, Fumidil B®, can control N. ceranae infection. However, the effectiveness of Fumidil B® is affected by several factors, such as storage, treatment preparation, the quantity consumed by bees etc. Indeed, UV exposure (e.g. sunlight) drastically reduces the initial concentration of fumagillin within a few hours, while temperature affects its degradation. Although laboratory tests suggest that a semisolid mixture of honey and powdered sugar is the best option to apply fumagillin, its application in syrup (250 mL per dosage) is more effective for the treatment of infected colonies. The total amount of syrup containing fumagillin ingested by honey bees is a key factor in its efficacy, and it has been found that medicated patties were not fully consumed in field trials. In honey bee colonies, the dose of 120 mg/honey bee colony at the recommended posology is effective against depopulation and colony death due to N. ceranae after 1 year, without residues being detected in honey, although reinfection could be detected 4 months after treatment ended.

Keywords

Nosema ceranae Fumagillin Stability Syrup Honey–sugar patty Dosage Treatment Colony depopulation 

Notes

Acknowledgements

The authors wish to thank the Spanish Ministry of Medio Ambiente, Medio Rural y Marino, the Consejería de Agricultura y Desarrollo Rural, and the Consejería de Educación y Ciencia for their financial support (projects RTA2008-0020-CO2-02 and API006-009, PAI09-0022-1264).

Conflicts of interest statement

Any mention of trade names or commercial products in this article is solely for the purpose of providing specific information.

Stabilité et efficacité de la fumagilline pour contrôler l’infection par Nosema ceranae (Microsporidia) chez les abeilles ( Apis mellifera ) en conditions de laboratoire et de terrain.

Nosema ceranae / fumagilline / stabilité / sirop / dosage / traitement / dépopulation de la colonie

Zusammenfassung–Die Stabilität und Effektivität von Fumagillin bei der Behandlung von Infektionen mit Nosema ceranae (Microsporidia) bei Honigbienen ( Apis mellifera ) unter Labor- und Freilandbedingungen. Das aus Aspergillus fumigatus gewonnene fumagillin ist als einzige Chemikalie zur Behandlung von Infektionen der Honigbiene mit Nosema zugelassen und wird innerhalb der EU als ein Arzneimittel für seltene Krankheiten betrachtet. Ausgehend von der Unsicherheit hinsichtlich der Wirksamkeit von fumagillin bei der Behandlung einer Infektion mit N. ceranae wurden in dieser Studie mehrere Faktoren untersucht. Die Stabilität von fumagillin wurde bei verschiedenen Konzentrationen unter Laborbedingungen getestet; dabei wurden der Einfluss verschiedener Arzneistoffträger (z.B. Zuckersirup oder –teig), verschiedener Temperaturen und der Einwirkung von UV-Strahlen untersucht. Zusätzlich wurden die Daten eines Feldversuchs an natürlicherweise mit N. ceranae infizierten Völkern ausgewertet, die wöchentliche Dosen von fumagillin in Sirup oder Zuckerteig erhielten. Diese wurden 4- bis 8-mal verabreicht, so dass die aufgenommene Gesamtmenge pro Volk bei 6 oder 8 g lag. Der Versuch schloss Kontrollgruppen ein, die Sirup ohne pharmakologische Inhaltstoffe erhielten. Während hohe Temperaturen (30–40°C) fortschreitende Degradation des fumagillins über 20 Tage hinweg verursachten, reduzierte die Einwirkung von UV-Strahlung die ursprüngliche Konzentration bereits innerhalb weniger Stunden drastisch. In der Beimischung zu Zuckerteig und bei Aufbewahrung in gefärbten Glasbehältern war es dagegen sowohl bei Kälte als auch bei Hitze sehr stabil, besonders auch bei höheren Konzentrationen. Nach vier Wochen war weniger als 10% Verlust zu verzeichnen. Obwohl sich in Labortests abzeichnete, dass eine Mischung aus Honig und Puderzucker zur Verabreichung des Medikaments am besten geeignet ist, war die Applikation in Sirup zur Behandlung infizierter Völker in Feldversuchen wirksamer. Die schlechteren Ergebnisse bei Anwendung von fumagillin in Honig–Zuckerteig wurden dadurch verursacht, dass die Bienen das Medikament nicht vollständig aufnahmen. Es ist sehr wichtig, für eine schnelle und vollständige Aufnahme des medikamentenhaltigen Futters zu sorgen um eine möglichst effektive Behandlung zu erreichen, besonders wenn man die Instabilität des fumagillins berücksichtigt. In der Tat scheint die aufgenommene fumagillin-haltige Futtermenge einen direkten Einfluss auf die Wirkung der Behandlung und das Überleben der Völker zu haben. Dementsprechend erschien die Behandlung am effektivsten wenn das Medikament in Sirup verabreicht wurde. Die beste Dosierung bestand aus einer Mischung von 30 mg fumagillin (1.5 g Fumidil B®) mit 250 mL Sirup, die einen Monat lang einmal wöchentlich verabreicht wurde. Nach dieser Behandlung wurden keine Rückstände im während der folgenden 4 Monate produzierten Honig entdeckt, wenn er aus dem Honigraum entnommen wurde.

Nosema ceranae / Fumagillin / Stabilität / Sirup / Honig-Zuckerteig / Dosierung / Behandlung / Völkerschwächung

References

  1. Antúnez, K., Martín-Hernández, R., Prieto, L., Meana, A., Zunino, P., Higes, M. (2009) Immune-suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environ. Microbiol. 11, 2284–2290PubMedCrossRefGoogle Scholar
  2. Assil, H.I., Sporns, P. (1991) ELISA and HPLC methods for analysis of fumagillin and its decomposition products in honey. J. Agric. Food Chem. 39, 2206–2213CrossRefGoogle Scholar
  3. Bailey, L. (1953) The treatment of nosema disease with fumagillin. Bee World 34, 136–137Google Scholar
  4. Brackett, J.M., Arguello, M.D., Schaar, J.C. (1988) Determination of fumagillin by high performance liquid chromatography. J. Agric. Food Chem. 36, 762–764CrossRefGoogle Scholar
  5. Chauzaut, M.P., Higes, M., Martín-Hernández, R., Meana, A., Cougoule, N., Faucon, J.P. (2007) Presence of Nosema ceranae in French honey bee colonies. J. Apic. Res. 46, 127–128CrossRefGoogle Scholar
  6. Chen, Y.P., Evans, J.D., Murphy, C., Gutell, R., Zuker, M., Gundensen-Rindal, D., Pettis, J.S. (2009) Morphological, molecular and phylogenetic characterization of Nosema ceranae, a microsporidian parasite isolated from the European honey bee Apis mellifera. J. Eukaryot. Microbiol. 56, 142–147PubMedCrossRefGoogle Scholar
  7. Cornma, R.S., Chen, Y.P., Schatz, M.C., Street, C., Zhao, Y., Desany, B., Egholm, M., Hutchison, S., Pettis, J.S., Lipkin, I.A. Evans, J.D. (2009) Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees. Plos Pathog. 5, 1–14Google Scholar
  8. Cox-Foxter, D.L., Conlan, S., Holmes, E.C., Palacios, G., Evans, J.D., Moran, N.A., Quan, P.L., Brise, T., Horning, M., Geiser, D.M., Martinson, V., VanEngelsdorp, D., Kalkstein, A.L., Drysdale, A., Hui, J., Zhai, J., Cui, L., Hutchinson, S.K., Simons, J.F., Egholm, M., Pettis, J.S., Lipkin, W.I. (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318, 283–287CrossRefGoogle Scholar
  9. Didier, E.S. (1997) Effects of albendazole, fumagillin and TNP-470 on microsporidial replication in vitro. Antim. Agents Chemother. 41, 1541–1546Google Scholar
  10. EMEA (2000) The European Agency for the Evaluation of Medicinal Products, Veterinary Medicines and Information Technology, EMEA/CVMP/411/00-FINAL, Committee for Veterinary Medicinal Products. Update of the Position Paper on Availability of Veterinary Medicines, agreed on 21 June 2000Google Scholar
  11. EMEA (2003) The European Agency for the Evaluation of Medicinal Products, Pre-authorisation Evaluation of Medicines for Human Use, London, 22 January 2003. EMEA/COMP/82/02 Rev. 1. Committee for Orphan Medicinal Products. Public summary of positive opinion for orphan designation of fumagillin for the treatment of diarrhoea associated with intestinal microsporidial infectionGoogle Scholar
  12. Fries, I., Feng, F., da Silva, A., Slemenda, S.B., Pieniazek, N.J. (1996) Nosema ceranae sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur. J. Protistol. 32, 356–365 Google Scholar
  13. Gallai, N.G., Salles, J.M., Settele, J., Vaissière, B. (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821CrossRefGoogle Scholar
  14. Gregorc, A., Sulimanovic, D. (1996) The effect of fumagillin in honey-sugar patties on suppression of nosema disease of the honeybee (Apis mellifera) in mating nuclei. Vet. Arhiv. 66, 129–133Google Scholar
  15. Higes, M., Martin-Hernández, R., Meana, A. (2006) Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J. Invertebr. Pathol. 92, 93–95PubMedCrossRefGoogle Scholar
  16. Higes, M., García-Palencia, P., Martín-Hernández, R., Meana, A. (2007) Experimental infection of Apis mellifera honeybees with the Microsporidia Nosema ceranae. J. Invertebr. Pathol. 94, 211–217PubMedCrossRefGoogle Scholar
  17. Higes, M., Martín-Hernández, R., Botías, C., Garrido-Bailón, E., González-Porto, A.V., Barrios, L., del Nozal, M., Bernal, J.L., Jimenez, J., Palencia, P. G., Meana, A. (2008) How natural infection by Nosema ceranae causes honeybee colony collapse. Environ. Microbiol. 10, 2659–2669PubMedCrossRefGoogle Scholar
  18. Higes, M., Martín-Hernández, R., Garrido-Bailón, E., Botías, C., Meana, A. (2009a) First detection of Nosema ceranae (Microsporidia) in African Honey bees (Apis mellifera intermissa). J. Apic. Res. 48, 217–219CrossRefGoogle Scholar
  19. Higes, M., Martín-Hernández, R., García-Palencia, P., Marín, P., Meana, A. (2009b) Horizontal transmission of Nosema ceranae (Microsporidia) from worker honey bees to queens (Apis mellifera). Environ. Microbiol. Reports 1, 495–498CrossRefGoogle Scholar
  20. Higes, M., Martín-Hernández, R., Garrido-Bailón, E., González-Porto, A.V., García-Palencia, P., Meana, A., Del Nozal, M.J., Mayo, R., Bernal, J.L. (2009c) Honeybee colony collapse due to Nosema ceranae in professional apiaries. Environ. Microbiol. Reports 1, 110–113CrossRefGoogle Scholar
  21. Higes, M., García-Palencia, P., Botías, C., Meana, A. Martín-Hernández, R. (2010a) The differential development of microsporidia infecting worker honey bee (Apis mellifera) at increasing incubation temperature. Environ. Microbiol. Reports 2, 745–748CrossRefGoogle Scholar
  22. Higes, M., Martín-Hernández, R., Meana, A. (2010b) Nosema ceranae in Europe: an emergent type C Nosemosis. Apidologie 41, 375–392CrossRefGoogle Scholar
  23. Huang, W.F., Jiang, J.H., Chen, Y.W., Wang, C.H. (2007) A Nosema ceranae isolate from the honeybee Apis mellifera. Apidologie 38, 30–37CrossRefGoogle Scholar
  24. Katznelson, H., Jamieson, C.A. (1952) Control of nosema disease of honeybees with fumagillin. Science 115, 70–71PubMedCrossRefGoogle Scholar
  25. Klee, J., Besana, A.M., Genersch, E., Gisder, S., Nanetti, A., Tam, D.Q., Chinh, T.X., Puerta, F., Ruz, J.M., Kryger, P., Message, D., Hatjina, F., Korpela, S., Fries, I.,, Paxton, R. (2007) Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J. Invertebr. Pathol. 96, 1–10PubMedCrossRefGoogle Scholar
  26. Kochansky, J., Nasr, M. (2004) Laboratory studies on the photostability of fumagillin, the active ingredient of Fumidil B. Apidologie 35, 301–310CrossRefGoogle Scholar
  27. Korpela, S. (2009) Nosema situation in Finland. 5th COLOSS Meet., Montpellier, [online]. Available at: http://www.coloss.org/documents/Vth_Coloss_Conference_Proceedings.pdf. Accessed 26 April 2010
  28. Martín-Hernández, R., Meana, A., Prieto, L., Martínez-Salvador, A., Garrido-Bailon, E., Higes, M. (2007) Outcome of colonization of Apis mellifera by Nosema ceranae. App. Environ. Microbiol. 73, 6331–6338CrossRefGoogle Scholar
  29. Martín-Hernández, R., Meana, A., García-Palencia, P., Marín, P., Botías, C., Garrido-Bailón, E., Barrios, L., Higes, M. (2009) Effect of temperature on the biotic potencial of honeybee microsporidia. App. Environ. Microbiol. 75, 2554–2557CrossRefGoogle Scholar
  30. McCowen, M.C., Callender, M.E., Lawlis, J.F. (1951) Fumagillin (H-3) a new antibiotic with amebicidal properties. Science 113, 202–203PubMedCrossRefGoogle Scholar
  31. Meana, A, Martín-Hernández, R., Higes, M. (2010) The reliability of spore counts to diagnose Nosema ceranae infections in honey bees. J. Apic. Res. & Bee World 49, 212–214CrossRefGoogle Scholar
  32. Nozal, M.J., Bernal, J.L., Martín, M.T., Bernal, J., Alvaro, A., Martín-Hernández, R., Higes, M. (2008) Trace analysis of fumagillin in honey by liquid chromatography-DAD-electrospray ionization mass spectrometry. J. Chromatogr. A 1190, 224–231PubMedCrossRefGoogle Scholar
  33. Office International des Epizooties (OIE) (2008) Chapter 2.2.4, Nosemosis of honeybee. In Manual of Standards for Diagnostic Test and Vaccines. [Online]. Available at: http://www.oie.int/eng/normes/mmanual/2008/pdf/2.02.04_NOSEMOSIS.pdf
  34. Paxton, R., Klee, J., Korpela, S., Fries, I. (2007) Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis. Apidologie 38, 558–565CrossRefGoogle Scholar
  35. Webster, T.C. (1994) Effects of fumagillin on Nosema apis and honey bees (Hymenoptera: Apidae). J. Econ. Entomol. 87, 601–601Google Scholar
  36. Whittington, R., Winston, M.L. (2003) Effects of Nosema bombi and its treatment fumagillin on bumble bee (Bombus occidentalis) colonies. J. Invertebr. Pathol. 84, 54–58PubMedCrossRefGoogle Scholar
  37. Williams, G.R., Shafer, A.B.A., Rogers, R.L.E., Shutler, D., Stewart, D.T. (2008) First detection of Nosema ceranae, a microsporidian parasite of European honey bees (Apis mellifera), in Canada and central USA. J. Invertebr. Pathol. 97, 189–192PubMedCrossRefGoogle Scholar
  38. Williams, G.R., Shutler, D., Rogers, R.L.E. (2010) Effect at neartic north-temperate latitudes of indoor versus outdoor overwintering on the microsporidium Nosema ceranae and western honey bees (Apis mellifera). J. Invertebr. Pathol. 104, 4–7PubMedCrossRefGoogle Scholar
  39. Williams, G.R., Shutler, D., Little, C.M., Burger-Maclellan, K.L., Rogers, R.L.E. (2011) The microsporidian Nosema ceranae, the antibiotic Fumagillin-B, and western honey bee (Apis mellifera) colony strength. Apidologie. doi: 10.1051/apido/2010030

Copyright information

© INRA, DIB-AGIB and Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Mariano Higes
    • 1
  • María J. Nozal
    • 2
  • Ana Alvaro
    • 2
  • Laura Barrios
    • 3
  • Aranzazu Meana
    • 4
  • Raquel Martín-Hernández
    • 1
  • José L. Bernal
    • 2
  • José Bernal
    • 5
  1. 1.Centro Apícola Regional, Bee Pathology LaboratoryMarchamaloSpain
  2. 2.CINQUIMA Investigation Institute, Analytical Chemistry Group, Faculty of SciencesUniversity of ValladolidValladolidSpain
  3. 3.Statistics Department, CTI, Consejo Superior Investigaciones CientíficasMadridSpain
  4. 4.Departamenteo de Sanidad Animal, Facultad de VeterinariaUniversidad Complutense de MadridMadridSpain
  5. 5.Institut for Industrial Fermentations (IFI), Consejo Superior de Investigaciones CientíficasMadridSpain

Personalised recommendations