Advertisement

Horticulture, Environment, and Biotechnology

, Volume 61, Issue 1, pp 163–171 | Cite as

Properties of self-sterile but cross-fertile allopolyploids synthesized between Brassica rapa and Raphanus sativus

  • Soo-Seong LeeEmail author
  • Cho Yee Son
  • Jiha Kim
  • Jeong Eun Park
  • Seung Hwa Yu
  • Gibum Yi
  • Jin Hoe Huh
Research Report
  • 61 Downloads

Abstract

To expand the availability of intergeneric allopolyploids between Brassica rapa and Raphanus sativus beyond BB#1, a stable xBrassicoraphanus koranhort (baemoochae) cultivar (2n = 38, aAARR genome), we developed four intergeneric hybrids between different materials from B. rapa and R. sativus. These hybrids produced neither self-pollinated seeds nor embryos in microspore culture. The hybrids, however, did produce seeds (F1F1) via cross-pollination with existing baemoochae and mooyangchae, another xBrassicoraphanus line (2n = 36, rCCRR genome) generated from a cross between R. sativus and B. oleracea at Huazhong Agriculture University, China. The hybrid plants (F1F1) produced more seeds than the previous generation in both self- and cross-pollination and embryos, even in the presence of an induced microspore mutation. The self-sterile, cross-fertile properties of the newly synthesized allopolyploids suggest possible mechanisms for fertility restoration and provide valuable information for the development of intergeneric baemoochae cultivars.

Keywords

Intergeneric hybrid xBrassicoraphanus koranhort Baemoochae Mooyangchae Synthetic line 

Notes

Acknowledgements

This work was supported by the Institute of Planning and Evaluation for Technology, Ministry of Food, Agriculture, Forestry, and Fisheries of Korea (117045-3). We would also like to thank the personnel at BBI for their assistance in this work.

Author contributions

S–S L conducted all procedures of this study. C Y S worked on the microspore culture of xBrassicoraphanus koranhort. J K proposed ideas and worked on medium development. J E P worked on pollination and made CAPS markers. S H Y made and tested CAPS. G Y led work on the CAPS markers and prepared the manuscript. J H H instructed students as a professor.

Compliance with ethical standards

Conflict of interest

The authors declare no competing interests or conflicts of interest.

Supplementary material

13580_2019_206_MOESM1_ESM.rtf (116 kb)
Supplementary material 1 (RTF 115 kb)

References

  1. Akaba M, Kaneko Y, Hatakeyama K, Ishida M, Bang SW, Matsuzawa Y (2009) Identification and evaluation of clubroot resistance of radish chromosome using a Brassica napus-Raphanus sativus monosomic addition line. Breed Sci 59:203–206.  https://doi.org/10.1270/jsbbs.59.203 CrossRefGoogle Scholar
  2. Alvarez JB, Guzmán C (2018) Interspecific and intergeneric hybridization as a source of variation for wheat grain quality improvement. Theor Appl Genet 131:225–251.  https://doi.org/10.1007/s00122-017-3042-x CrossRefPubMedGoogle Scholar
  3. Ballesfin ML, Vinarao RB, Sapin J, Kim S-R, Jena KK (2018) Development of an intergeneric hybrid between Oryza sativa L. and Leersia perrieri (A. Camus) Launert. Breed Sci 68:474–480.  https://doi.org/10.1270/jsbbs.18045 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Been CG, Park HG (1983) Application of ovule culture to production of intergeneric hybrids between Brassica and Raphanus. J Korean Soc Hortic Sci 25:100–108Google Scholar
  5. Belandres HR, Waminal NE, Hwang Y-J, Park B-S, Lee S-S, Huh JH, Kim HH (2015) FISH karyotype and GISH meiotic pairing analyses of a stable intergeneric hybrid xBrassicoraphanus line BB#5. Korean J Hortic Sci Technol 31:83–92.  https://doi.org/10.7235/hort.2015.14151 CrossRefGoogle Scholar
  6. Chen HG, Wu JS (2008) Characterization of fertile amphidiploid between Rapanus sativus and Brassica alboglabra and the crossability with Brassica species. Genet Res Crop Evol 55:143–150.  https://doi.org/10.1007/s10722-007-9223-8 CrossRefGoogle Scholar
  7. Cho YS (1986) Studies on overcoming the postfertilization failure in the intergeneric cross between Chinese cabbage (Brassica campestris ssp. pekinensis) and radish (Raphanus sativus L.). MS thesis Seoul National UniversityGoogle Scholar
  8. Choi GJ (2015) Report of results on clubroot investigation with pathogen group 4 (Seosan mutant type 3). Korea Research Institute of Chemical Technology 1, Daejeon, KoreaGoogle Scholar
  9. Dolstra O (1982) Synthesis and fertility of xBrassicoraphanus and ways of transferring Raphanus characters to Brassica. Agric Res Rep 917:1–90Google Scholar
  10. Fujita Y, Sunaga K, Shim S-H, Yamada W, Ohnishi T, Bang SW (2018) Production of a desirable Brassica oleracea CMS line using an alloplasmic B. rapaCMS line carrying Diplotaxis erucoides cytoplasm as a bridge plant. Plant Breed 137:162–170.  https://doi.org/10.1111/pbr.12565 CrossRefGoogle Scholar
  11. Huang H, Tong Y, Zhang Q-J, Gao L-Z (2013) Genome size variation among and within camellia species by using flow cytometric analysis. PLoS One 8:e64981.  https://doi.org/10.1371/journal.pone.0064981 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Jung H-J, Park J-I, Ahmed NU, Chung M-Y, Kim H-R, Cho Y-G, Lee S-S, Nou I-S (2014) Characterization of self-incompatibility genes in the intergeneric hybrid xBrassicoraphanus. Plant Syst Evol 300:1903–1911.  https://doi.org/10.1007/s00606-014-1016-x CrossRefGoogle Scholar
  13. Kaneko Y, Bang SW (2014) Interspecific and intergeneric hybridization and chromosomal engineering of Brassicaceae crops. Breed Sci 64:14–22.  https://doi.org/10.1270/jsbbs.64.14 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Karpechenko GD (1924) Hybrids of ♀Raphanus sativus L. × ♂Brassica oleacea L. J Genet 14:375–396CrossRefGoogle Scholar
  15. Karpechenko GD (1927) Polyploid hybrid of Raphanus sativus L. x Brassica oleracea L. Bull Appl Bot Genet Plant Breed 7:305–410Google Scholar
  16. Keller WA, Amstrong KC (1977) Embryogenesis and plant regeneration in Brassica napus anther cultures. Can J Bot 55:1383–1388.  https://doi.org/10.1139/b77-160 CrossRefGoogle Scholar
  17. Kim H, Jo EJ, Choi YH, Jang KS, Choi GJ (2016) Pathotype classification of Plasmodiophora brassicae isolates using clubroot-resistant cultivars of Chinese cabbage. Plant Pathol J 32:423–430.  https://doi.org/10.5423/PPJ.OA.04.2016.0081 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lee SS, Woo JG, Shin HH (1989) Obtaining intergeneric hybrid plant between Brassica campestris and Raphanus sativus through young ovule culture. Korean J Breed 21:52–57Google Scholar
  19. Lee S-S, Choi W-J, Woo J-G (2002) Development of a new vegetable crop in xBrassicoraphanus by hybridization of Brassica campestris and Raphanus sativus. J Korean Soc Hortic Sci 43:693–698Google Scholar
  20. Lee S-S, Lee S-A, Yang J, Kim J (2011) Developing stable progenies of Brassicoraphanus, an intergeneric allopolyploid between Brassica rapa and Raphanus sativus through induced mutation using microspore culture. Theor Appl Genet 122:885–892.  https://doi.org/10.1007/s00122-010-1494-3 CrossRefPubMedGoogle Scholar
  21. Lee S-S, Kim TY, Yang J, Kim J, Lim S, Yoon MG (2012) Morphological and nutritional characteristics and crossability with Brassica species of baemoochae, xBrassicoraphanus. Korean J Hortic Sci Technol 30:543–548.  https://doi.org/10.7235/hort.2012.12050 CrossRefGoogle Scholar
  22. Lee S-S, Hwang BH, Kim TY, Yang J, Han N, Kim J, Kim HH, Belandres H (2017) Developing stable cultivar through microspore mutagenesis in × Brassicoraphanus koranhort, inter-generic allopolyploid between Brassica rapa and Raphanus sativus. Am J Plant Sci 8:1345–1356.  https://doi.org/10.4236/ajps.2017.86091 CrossRefGoogle Scholar
  23. Lim S, Lee J, Kim JK (2009) Analysis of isothiocyanates in newly generated vegetables, Baemuchae (xBrassicoraphanus) as affected by growth. Int J Food Sci Technol 44:1401–1407.  https://doi.org/10.1111/j.1365-2621.2009.01970.x CrossRefGoogle Scholar
  24. McNaughton IH (1979) The current position and problems in the breeding of Raphanobrassica (radicole) as a forage crop. In: Proceedings 4th Eucarpia-confer breed. Cruciferous Crops, pp 22–28Google Scholar
  25. Mun JH, Chung H, Chung WH, Oh M, Jeong YM, Kim N, Ahn BO, Park BS, Park S, Lim KB et al (2015) Construction of a reference genetic map of Raphanus sativus based on genotyping by whole-genome resequencing. Theor Appl Genet 128:259–272.  https://doi.org/10.1007/s00122-014-2426-4 CrossRefPubMedGoogle Scholar
  26. Pfosser M, Amon A, Lelley T, Heberle-Bors E (1995) Evaluation of sensitivity of flow cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheat-rye addition lines. Cytometry 21:387–393.  https://doi.org/10.1002/cyto.990210412 CrossRefPubMedGoogle Scholar
  27. Prakash S, Bhat SR, Quiros CF, Kirti PB, Chopra VL (2009) Brassica and its close allies: cytogenetics and evolution. Plant Breed Rev 31:21–187Google Scholar
  28. Sageret A (1826) Considérations sur la production des hybrides, des variantes et des variétés en général, et sur celles de la famille des Cucurbitacées en particulier. Annales des Sciences Naturelles 8:294–314 (cited from Prakash et al. 2009)Google Scholar
  29. Terasawa Y (1932) Polyploide Bastarde von Brassica chinensis L. x Raphanus sativus. Jpn J Genet 7:312–314Google Scholar
  30. Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039.  https://doi.org/10.1038/ng.919 CrossRefGoogle Scholar

Copyright information

© Korean Society for Horticultural Science 2020

Authors and Affiliations

  • Soo-Seong Lee
    • 1
    Email author
  • Cho Yee Son
    • 1
  • Jiha Kim
    • 1
    • 3
  • Jeong Eun Park
    • 2
  • Seung Hwa Yu
    • 2
  • Gibum Yi
    • 2
  • Jin Hoe Huh
    • 2
  1. 1.BioBreeding InstituteAnseongKorea
  2. 2.Department of Plant Science, Plant Genomics and Breeding InstituteSeoul National UniversitySeoulKorea
  3. 3.Monsanto ThailandBangkokThailand

Personalised recommendations