Horticulture, Environment, and Biotechnology

, Volume 58, Issue 4, pp 414–422 | Cite as

Antioxidant properties and principal phenolic phytochemicals of Iranian tarragon (Artemisia dracunculus L.) accessions

  • Hasan Mumivand
  • Mesbah Babalar
  • Leila Tabrizi
  • Lyle E. Craker
  • Majid Shokrpour
  • Javad Hadian
Research Report


Artemisia dracunculus L. (tarragon), a common spice and vegetable grown throughout Iran, is an economically important species of the Asteraceae family. The free radical-scavenging activities of 12 Iranian A. dracunculus accession extracts were evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP) assays. The total phenolic and flavonoid contents were measured using spectrophotometric techniques. Reversed-phase highperformance liquid chromatography (RP-HPLC) with UV detection was also used to identify the major phenolic compounds, revealing the presence of chlorogenic, syringic, and caffeic acids, while the predominant flavonoid was quercetin. Herniarin was the main coumarin in the extracts. Although a high antioxidant capacity was observed in all extracts, their antioxidant activities varied significantly, with the Birjand and Varamin accessions having the highest and the lowest capacities, respectively. The obtained total phenolic and flavonoid values similarly varied among tarragon accessions. Positive linear correlations were found between total antioxidant capacities (DPPH and FRAP assays) and total phenolic as well as flavonoid contents, indicating that phenolic compounds were the dominant antioxidant constituents in the tested plant extracts. Tarragon could therefore be a good source of natural antioxidants and has potential as a valuable dietary supplement.

Additional key words

coumarins DPPH flavonoids FRAP phenolic acids radical scavenging activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aaby K, Hvattum E, Skrede G (2004) Analysis of flavonoids and other phenolic compounds using high-performance liquid chromatography with coulometric array detection: relationship to antioxidant activity. J Agric Food Chem 52:4595–4603CrossRefPubMedGoogle Scholar
  2. Aglarova AM, Zilfikarov IN, Severtseva OV (2008) Biological characteristics and useful properties of tarragon (Artemisia dracunculus L.) Pharm Chem J 42:31–35CrossRefGoogle Scholar
  3. Amarowicz R, Pegg RB, Rahimi-Moghaddam P, Barl B, Weil, JA (2004) Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem 84:551–562CrossRefGoogle Scholar
  4. Andrade PB, Seabra RM, Valentao P, Aretias F (1998) Simultaneous determination of flavonoids, phenolic acids, and coumarins in seven medicinal species by HPLC/diode-array detector. J Liq Chromatogr Related Technol 21:2813–2820CrossRefGoogle Scholar
  5. Aruoma OI (2003) Methodological considerations for characterizing potential antioxidant actions of bioactive components in plant foods. Mutat Res 523–524:9–20CrossRefPubMedGoogle Scholar
  6. Awika JM, Rooney LW, Wu X, Prior RL, Cisneros-Zevallos L (2003) Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J Agric Food Chem 51:6657–6662CrossRefPubMedGoogle Scholar
  7. Benzie IFF, Strain JJ (1996) The ferric reducing agent of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem 239:70–76CrossRefPubMedGoogle Scholar
  8. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm-Wiss Technol 28:25–30CrossRefGoogle Scholar
  9. Cai Y, Sun M, Xing J, Corke H (2004) Antioxidant phenolic constituents in roots of Rheum officinale and Rubia cordifolia: structure-radical scavenging activity relationships. J Agric Food Chem 52:7884–7890CrossRefPubMedGoogle Scholar
  10. Cao G, Alessio HM, Cutler RG (1993) Oxygen-radical absorbance capacity assay for antioxidants. Free Radical Biol Med 14:303–311CrossRefGoogle Scholar
  11. Chauhan RS, Kitchlu S, Ram G, Kaul MK, Tava A (2010) Chemical composition of capillene chemotype of Artemisia dracunculus L. from North-West Himalaya, India. Indust Crops Products 31: 546–549CrossRefGoogle Scholar
  12. Choi CW, Kim SC, Hwang SS, Choi BK, Ahn HJ, Lee MY, Park SH, Kim SK (2002) Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci 163:1161–1168CrossRefGoogle Scholar
  13. Connor AM, Luby JJ, Hancock JF, Berkheimer S, Hanson JE (2002) Changes in fruit antioxidant activity among blueberry cultivars during cold-temperature storage. J Agric Food Chem 50:893–898CrossRefPubMedGoogle Scholar
  14. Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352CrossRefPubMedGoogle Scholar
  15. Eisenman SW, Struwe L (2011) The global distribution of wild tarragon (Artemisia dracunculus L.; Asteraceae) cytotypes with twenty-seven new records from North America. Genet Resour Crop Evol 58:1199–1212CrossRefGoogle Scholar
  16. Erkan N, Ayranci G, Ayranci E (2008) Antioxidant activities of rosemary (Rosmarinus Officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol. Food Chem 110:76–82CrossRefPubMedGoogle Scholar
  17. Faudale M, Viladomat F, Bastida J, Poli F, Codina C (2008) Antioxidant activity and phenolic composition of wild, edible, and medicinal fennel from different Mediterranean countries. J Agric Food Che. 56:1912–1920CrossRefGoogle Scholar
  18. Frankel EN, Meyer AS (2000) The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J Sci Food Agric 80:1925–1941CrossRefGoogle Scholar
  19. Garcia-Salas P, Morales-Soto A, Segura-Carretero A, Fernandez-Gutierrez A (2010) Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules 15:8813–8826CrossRefPubMedGoogle Scholar
  20. Gerard J (1987) The generall historie of plants, London, U.K., 1633, pp 249Google Scholar
  21. Ghahremani-majd H, Dashti F, Dastan D, Mumivand H, Hadian J, Esna-Ashari M (2012) Antioxidant and antimicrobial activities of Iranian mooseer (Allium hirtifolium Boiss) populations. Hortic Environ Biote 53:116–122CrossRefGoogle Scholar
  22. Ghiselli A, Serafini M, Maiani G, Azzini E, Ferroluzzi A (1995) A fluorescense-based method for measuring total plasma antioxidant capability. Free Radical Biol Med 18:29–36CrossRefGoogle Scholar
  23. Gülçin I, Bursal E, Şehitoĝlu MH, Bilsel M, Gören AC (2010) Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey. Food Chem Toxicol 48:2227–2238CrossRefPubMedGoogle Scholar
  24. Hatano T, Kagawa H, Yasuhara T, Okuda T (1988) Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem Pharm Bull 36: 2090–2097CrossRefPubMedGoogle Scholar
  25. Hofer O, Szabo G, Greger H (1986) 2-Hydroxy-4-methoxytranscinnamic acid as a precursor of herniarin in Artemisia dracunculus. Monatsh Chem 117:1219–1222CrossRefGoogle Scholar
  26. Katalinic V, Mozina SS, Skroza D, Generalic I, Abramovic H, Milos M, Ljubenkov I, Piskernik S, Pezo I, Terpinc P, Boban M (2010) Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chem 119:715–723CrossRefGoogle Scholar
  27. Jang HD, Chang KS, Huang YS, Hsu CL, Lee SH, Su MS (2007) Principal phenolic phytochemicals and antioxidant activities of three Chinese medicinal plants. Food Chem 103:749–756CrossRefGoogle Scholar
  28. Kalantari H, Galehdari H, Zaree Z, Gesztelyi R, Varga B, Haines D, Bombicz M, Tosaki A, Juhasz B (2013) Toxicological and mutagenic analysis of Artemisia dracunculus (tarragon) extract. Food Chem Toxicol 51:26–32CrossRefPubMedGoogle Scholar
  29. Karimi A, Hadian A, Farzaneh M, Khadivi-Khub A (2015a) Evaluation of genetic variability, rust resistance and marker-detection in cultivated Artemisia dracunculus from Iran. Gene 554:224–232CrossRefPubMedGoogle Scholar
  30. Karimi A, Hadian A, Farzaneh M, Khadivi-Khub A (2015b) Phenotypic diversity and volatile composition of Iranian Artemisia dracunculus. Indust Crops Products 65:315–323CrossRefGoogle Scholar
  31. Karimi E, Jaafar H-ZE (2011) HPLC and GC-MS determination of bioactive compounds in microwave obtained extracts of three varieties of Labisia pumila Benth. Molecules 16:6791–6805CrossRefPubMedGoogle Scholar
  32. Khoddami A, Wilkes MA, Roberts TH (2013) Techniques for analysis of plant phenolic compounds. Molecules 18:2328–2375CrossRefPubMedGoogle Scholar
  33. Komes D, Belscak-Cvitanovic A, Horzic D, Rusak G, Likic S, Berendika M (2011) Phenolic composition and antioxidant properties of some traditionally used medicinal plants affected by the extraction time and hydrolysis. Phytochem Anal 22:172–80CrossRefPubMedGoogle Scholar
  34. Kordali S, Kotan R, Mavi A, Cakir A, Ala A, Yildirim A (2005) Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, A. santonicum, and A. spicigera. J Agric Food Chem 24:9452–9458CrossRefGoogle Scholar
  35. Lin LZ, Harnly JM (2012) LC-PDA-ESI/MS Identification of the phenolic components of three compositae spices: chamomile, tarragon, and mexican arnica. Nat Prod Commun 7:749–752PubMedPubMedCentralGoogle Scholar
  36. Lopes-Lutz D, Alviano DS, Alviano CS, Kolodziejczyk PP (2008) Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry 69:1732–1738CrossRefPubMedGoogle Scholar
  37. Miller NJ, Rice-Evans CA, Davies HV, Gopinathan V, Milner A (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 84:407–412CrossRefPubMedGoogle Scholar
  38. Mustafa RA, Hamid AA, Mohamed S, Baka, FA (2010) Total phenolic compounds, flavonoids and radical scavenging activity of 21 selected tropical plants. J Food Sci 75:28–35CrossRefGoogle Scholar
  39. Obolskiy D, Pischel I, Feistel B, Glotov N, Heinrich M (2011) Artemisia dracunculus L. (Tarragon): A critical review of its traditional use, chemical composition, pharmacology and safety. J Agric Food Chem 59:11367–11384CrossRefPubMedGoogle Scholar
  40. Onuchak LA, Kurkin VA, Minakhmetov RA (2000) HPLC analysis of Artemisia dracunculus extracts. Chem Nat Compd 36:144–147CrossRefGoogle Scholar
  41. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2:270–278CrossRefPubMedPubMedCentralGoogle Scholar
  42. Pawar N, Pai S, Nimbalkar M, Dixit G (2011) RP-HPLC Analysis of phenolic antioxidant compound 6-gingerol from different ginger cultivars. Food Chem 126:1330–1336CrossRefGoogle Scholar
  43. Pereira, DM, Valentao, P, Pereira, JA, Andrade, PB (2009) Phenolics: from chemistry to biology. Molecules. 14, 2202–2211CrossRefGoogle Scholar
  44. Piccaglia R, Marottil M, Giovanellil E, Deans SG, Eaglesham E (1993) Antimicrobial and antioxidant properties of Mediterranean aromatic plants. Indust Crops Products 2:47–50CrossRefGoogle Scholar
  45. Proestos C, Boziaris IS, Nychas GJE, Komaitis M (2006) Analysis of flavonoids and phenolic acids in Greek aromatic plants: Investigation of their antioxidant capacity and antimicrobial activity. Food Chem 95:664–671CrossRefGoogle Scholar
  46. Quettier-Deleu C, Gressier B, Vasseur J, Dine T, Brunet C, Luyckx M, Cazin M, Cazin J-C, Bailleul F, Trotin F (2000) Phenolic compounds and antioxidant activities of buckweat hulls and flour. J Ethnopharmacol 72:35–42CrossRefPubMedGoogle Scholar
  47. Rababah TM, Ereifej KhI, Esoh RB, Al-udatt MH, Alrababah MA, Yang W (2011) Antioxidant activities, total phenolics and HPLC analyses of the phenolic compounds of extracts from common Mediterranean plants. Nat Prod Res 25:596–605CrossRefPubMedGoogle Scholar
  48. Roby MHH, Sarhan MA, Selim KA, Khalel KI (2013) Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Indust Crops Products 43:827–31CrossRefGoogle Scholar
  49. Ruberto G, Renda A, Daquino C, Amico V, Spatafora C, Tringali C, Tommasi ND (2007) Polyphenol constituents and antioxidant activity of grape pomace extracts from five Sicilian red grape cultivars. Food Chem 100:203–210CrossRefGoogle Scholar
  50. Saadali B, Boriky D, Blaghen M, Vanhaelen M, Talbi M (2001) Alkamides from Artemisia dracunculus. Phytochemistry 58:1083–1086CrossRefPubMedGoogle Scholar
  51. Santos-Buelga C, Williamson G (2003) Methods in polyphenol analysis. Cambridge, UK: Royal Society of ChemistryGoogle Scholar
  52. Schlesier K, Harwat M, Bohm V, Bitsch R (2002) Assessment of antioxidant activity by using different in vitro methods. Free Radical Res 36:177–187CrossRefGoogle Scholar
  53. Shahriyary L, Yazdanparast R (2007) Inhibition of blood platelet adhesion, aggregation and secretion by Artemisia dracunculus leaves extracts. J Ethnopharmacol 114:194–198CrossRefPubMedGoogle Scholar
  54. Silva AB, Ferreres F, Malva JO, Dias ACP (2005) Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food Chem 90:157–167CrossRefGoogle Scholar
  55. Skerget M, Kotnik P, Hadolin M, Hras AR, Simonic M, Knez Z (2005) Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem 89: 191–198CrossRefGoogle Scholar
  56. Spacil Z, Novakova L, Solich P (2008) Analysis of phenolic compounds by high performance liquid chromatography and ultra-performance liquid chromatography. Talanta 76:189–199CrossRefPubMedGoogle Scholar
  57. Spanos GA, Wrolstad RE (1990) Influence of processing and storage on the phenolic composition of Thompson seedless grape juice. J Agric Food Chem 38:1565–1571CrossRefGoogle Scholar
  58. Stanojevic L, Stanojevic M, Nikolic V, Nikolic L, Ristic D, Canadanovic-Brunet J, Tumbas V (2009) Antioxidant activity and total phenolic and flavonoid contents of Hieracium pilosella L. extracts. Sensors 9:5702–5714CrossRefPubMedPubMedCentralGoogle Scholar
  59. Steinmann D, Ganzera M (2011) Recent advances on HPLC/MS in medicinal plant analysis. J Pharm Biomed Anal 55:744–757CrossRefPubMedGoogle Scholar
  60. Supilnikova AV (2004) Developing of methods of quantitative and qualitative analysis for tarragon (Artemisia dracunculus L.). Ph.D. thesis, SamaraGoogle Scholar
  61. Surveswaran S, Cai YZ, Corke H, Sun M (2007) Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem 102:938–953CrossRefGoogle Scholar
  62. Tawaha K, Alali FQ, Gharaibeh M, Mohammad M, El-Elimat T (2007) Antioxidant activity and total phenolic content of selected Jordanian plant species. Food Chem 104:1372–1378CrossRefGoogle Scholar
  63. Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal 19:669–675CrossRefGoogle Scholar
  64. Trumbeckaite S, Benetis R, Bumblauskiene L, Burdulis D, Janulis V, Toleikis A, Viskelis P, Jakstas V (2011) Achillea millefolium L. s.l. herb extract: Antioxidant activity and effect on the rat heart mitochondrial functions. Food Chem 127:1540–1548CrossRefGoogle Scholar
  65. Uhl SR, Strauss S (2000) Handbook of spices, seasonings and flavorings, Technomic Publishing: Lancaster, PA, pp 170–171CrossRefGoogle Scholar
  66. Velioglu YS, Mazza G, Gao L, Oomah BD (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46:4113–4117CrossRefGoogle Scholar
  67. Weinoehrl S, Feistel B, Pischel I, Kopp B, Butterweck V (2012) Comparative evaluation of two different Artemisia dracunculus L. cultivars for blood sugar lowering effects in rats. Phytother Res 26:625–629CrossRefPubMedGoogle Scholar
  68. Wojdylo A, Oszmianski J, Czemerys R (2007) Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem 105: 940–949CrossRefGoogle Scholar
  69. Wu C, Huang M, Lin Y, Ju H, Ching H (2007) Antioxidant properties of Cortex Fraxini and its simple coumarins. Food Chem 104: 1464–1471CrossRefGoogle Scholar
  70. Wu CQ, Chen F, Wang X, Kim HJ, He GQ, Haley-Zitlin V, Huang G (2006) Antioxidant constituents in feverfew (Tanacetum parthenium) extract and their chromatographic quantification. Food Chem 96: 220–227CrossRefGoogle Scholar

Copyright information

© Korean Society for Horticultural Science and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Hasan Mumivand
    • 1
  • Mesbah Babalar
    • 2
  • Leila Tabrizi
    • 2
  • Lyle E. Craker
    • 3
  • Majid Shokrpour
    • 2
  • Javad Hadian
    • 4
  1. 1.Department of Horticultural Sciences, Faculty of AgricultureLorestan UniversityKorramabadIran
  2. 2.Department of Horticultural Science, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural ResourcesUniversity of TehranKarajIran
  3. 3.Department of Plant, Soil, and Insect SciencesUniversity of MassachusettsAmherstUSA
  4. 4.Medicinal Plants and Drug Research InstituteShahid Beheshti University, G. C., EvinTehranIran

Personalised recommendations