Advertisement

Horticulture, Environment, and Biotechnology

, Volume 58, Issue 4, pp 376–383 | Cite as

Expression analysis of ginsenoside biosynthesis-related genes in methyl jasmonate-treated adventitious roots of Panax ginseng via DNA microarray analysis

  • Yurry Um
  • Yi Lee
  • Seong-Cheol Kim
  • Yeon-Ju Jeong
  • Geum-Soog Kim
  • Dong-Woog Choi
  • Seon-Woo Cha
  • Ok-Tae Kim
Research Report
  • 87 Downloads

Abstract

Many ginsenoside biosynthesis-related genes have been identified in Panax ginseng. However, there is no report of the analysis of changes in gene expression induced methyl jasmonic acid (MeJA) using DNA microarray analysis. To identify the genes related to ginsenoside biosynthesis, we harvested P. ginseng adventitious roots at 0, 24, 72 and 120 h after MeJA treatment. At 120 h after MeJA elicitation, the contents of all ginsenosides increased compared to the control. We analyzed gene expression patterns in ginseng adventitious roots treated with MeJA using DNA microarray analysis and selected candidate genes related to ginsenoside biosynthesis, including genes encoding squalene synthase (SQS), squalene epoxidase (SE), dammarenediol-II synthase (DS), cytochrome P450 oxidase (CYP) and glycosyltransferase (GT). The expression patterns of these genes in MeJA-treated ginseng adventitious roots obtained by quantitative RT-PCR were consistent with those obtained by microarray analysis. Therefore, DNA microarray analysis is an efficient tool for selecting candidate genes associated with secondary metabolite biosynthesis in plants.

Additional key words

CombiMatrix DNA chip gene expression MeJA Methyl jasmonate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13580_2017_41_MOESM1_ESM.xlsx (3.4 mb)
Supplementary Table S1. Microarray analysis of 10,100 unigenes in adventitious roots elicited by MeJA
13580_2017_41_MOESM2_ESM.xlsx (72 kb)
Supplementary Table S2. Microarray analysis of 804 unigenes in adventitious roots elicited by MeJA

Literature Cited

  1. Aharoni A, Vorst O (2001) DNA microarrays for functional plant genomics. Plant Mol Biol 48:99–118CrossRefGoogle Scholar
  2. Ahn SI, Kim SK, Yang BW, Lee ES, Kang CS, Hahm YT (2016). Analysis of ginsenosides and non-saponin components of red ginseng from Landraces and New Varieties. Kor J Hortic Sci Technol 34:790–798Google Scholar
  3. Bae KH, Choi YE, Shin CG, Kim YY, Kim YS (2006) Enhanced ginsenoside productivity by combination of ethephon and methyl jasmonate in ginseng (Panax ginseng C.A. Meyer) adventitious root cultures. Biotechnol Lett 28:1163–1166CrossRefPubMedGoogle Scholar
  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57:289–300Google Scholar
  5. Cao H, Nuruzzaman M, Xiu H, Huang J, Wu K, Chen X, Li J, Wang L, Jeong JH, Park SJ, Yang F, Luo J, Luo Z (2015) Transcriptome analysis of methyl jasmonate-elicited Panax ginseng adventitious roots to discover putative ginsenoside biosynthesis and transport genes. Int J Mol Sci 16:3035–3057CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chen S, Luo H, Li Y, Sun Y, Wu Q, Niu Y, Song J, Lv A, Zhu Y, Sun C, Steinmetz A, Qian Z (2011) 454 EST analysis detects genes putatively involved in ginsenoside biosynthesis in Panax ginseng. Plant Cell Rep 30:1593–1601CrossRefPubMedGoogle Scholar
  7. Choi DW, Jung J, Ha YI, Park HW, In DS, Chung HJ, Liu JR (2005) Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Rep 23:557–566CrossRefPubMedGoogle Scholar
  8. Facchini PJ, Penzes C, Johnson AG, Bull D (1996) Molecular characterization of berberine bridge enzyme genes from opium poppy. Plant Physiol 112:1669–1677CrossRefPubMedPubMedCentralGoogle Scholar
  9. Han JY, Kim HJ, Kwon YS, Choi YE (2011) The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 52:2062–2073CrossRefPubMedGoogle Scholar
  10. Jayakodi M, Lee SC, Lee YS, Park HS, Kim NH, Jang W, Lee HO, Joh HJ, Yang TJ (2015) Comprehensive analysis of Panax ginseng root transcriptomes. BMC Plant Biol 15:138CrossRefPubMedPubMedCentralGoogle Scholar
  11. Jayakodi M, Lee SC, Park HS, Jang W, Lee YS, Choi BS, Nah GJ, Kim DS, Natesan S, Sun C, Yang TJ (2014) Transcriptome profiling and comparative analysis of Panax ginseng adventitious roots. J Ginseng Res 38:278–288CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kim YS, Han JY, Lim S, Choi YE (2009) Ginseng metabolic engineering: regulation of genes related to ginsenoside biosynthesis. J Med Plant Res 3:1270–1276Google Scholar
  13. Larbat R, Kellner S, Specker S, Hehn A, Gontier E, Hans J, Bourgaud F, Matern U (2007) Molecular cloning and functional characterization of psoralen synthase, the first committed monooxygenase of furanocoumarin biosynthesis. J Biol Chem 282:542–554CrossRefPubMedGoogle Scholar
  14. Lee MH, Jeong JH, Seo JW, Shin CG, Kim YS, In JG, Yang DC, Yi JS, Choi YE (2004) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 45:976–984CrossRefPubMedGoogle Scholar
  15. Lee SM, Bae BS, Park HW, Ahn NG, Cho BG, Cho YL, Kwak YS (2015) Characterization of Korean Red Ginseng (Panax ginseng Meyer): History, preparation method, and chemical composition. J Ginseng Res 39:384–391CrossRefPubMedPubMedCentralGoogle Scholar
  16. Li C, Zhu Y, Guo X, Sun C, Luo H, Song J, Li Y, Wang L, Qian J, Chen S (2013) Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C. A. Meyer. BMC Genomics 14:245CrossRefGoogle Scholar
  17. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  18. Lu MB, Wong HL, Teng WL (2001) Effects of elicitation on the production of saponin in cell culture of Panax ginseng. Plant cell Rep 20:674–677Google Scholar
  19. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  20. Neugart S, Krumbein A, Zrenner R (2016) Influence of light and temperature on gene expression leading to accumulation of specific flavonol glycosides and hydroxycinnamic acid derivatives in Kale (Brassica oleracea var. sabellica). Front Plant Sci 7:326CrossRefPubMedPubMedCentralGoogle Scholar
  21. Palazón J, Cusidó RM, Bonfill M, Mallol A, Moyano E, Morales C, Piñol MT (2003) Elicitation of different Panax ginseng transformed root phenotypes for an improved ginsenoside production. Plant Physiol Biochem 41:1019–1025CrossRefGoogle Scholar
  22. Paek KY, Murthy HN, Hahn EJ, Zhong JJ (2009) Large scale culture of ginseng adventitious roots for production of ginsenosides. Adv Biochem Eng Biotechnol 113:151–176PubMedGoogle Scholar
  23. Sivakumar G., K.W. Yu, K.Y. Paek (2005) Production of biomass and ginsenosides from adventitious roots of Panax ginseng in bioreactor cultures. Eng Life Sci. 5:333–342Google Scholar
  24. Wei W, Wang P, Wei Y, Liu Q, Yang C, Zhao G, Yue J, Yan X, Zhou Z (2015) Characterization of Panax ginseng UDP glycosyltransferases catalyzing protopanaxatriol and biosyntheses of bioactive ginsenosides F1 and Rh1 in metabolically engineered yeasts. Mol Plant 8:1412–1424CrossRefPubMedGoogle Scholar
  25. Yu KW, Gao W, Hahn EJ, Paek KY (2002) Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochem Eng J 11:211–215CrossRefGoogle Scholar

Copyright information

© Korean Society for Horticultural Science and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yurry Um
    • 1
  • Yi Lee
    • 2
  • Seong-Cheol Kim
    • 1
  • Yeon-Ju Jeong
    • 2
  • Geum-Soog Kim
    • 1
  • Dong-Woog Choi
    • 3
  • Seon-Woo Cha
    • 1
  • Ok-Tae Kim
    • 1
  1. 1.Department of Herbal Crop ResearchNational Institute of Horticultural and Herbal Science, Rural Development AdministrationEumseongKorea
  2. 2.Department of Industrial Plant Science and TechnologyChungbuk National UniversityCheongjuKorea
  3. 3.Department of Biology EducationChonnam National UniversityGwangjuKorea

Personalised recommendations