Advertisement

Horticulture, Environment, and Biotechnology

, Volume 55, Issue 6, pp 548–556 | Cite as

Identification of three FLOWERING LOCUS C genes responsible for vernalization response in radish (Raphanus sativus L.)

  • Gibum Yi
  • Hyerang Park
  • June-Sik Kim
  • Won Byoung Chae
  • Suhyoung Park
  • Jin Hoe Huh
Research Report

Abstract

Raphanus sativus L. is grown worldwide and used as fresh vegetables. In the Brassicaceae family, the FLOWERING LOCUS C (FLC) gene is a key regulator of flowering time and explains a large part of natural flowering time variation and the vernalization response. Here we report three FLC orthologous genes RsFLC1, RsFLC2, and RsFLC3 in R. sativus identified from the de novo assembled transcriptome. The sequences of three RsFLC genes have a high similarity to Arabidopsis FLC. Overexpression of each RsFLC gene in Arabidopsis induced late flowering, suggesting that every RsFLC gene functions as a floral repressor. All RsFLC genes were highly expressed in non-vernalized plants, whereas their expression levels significantly decreased by the vernalization treatment. Furthermore, the rate of decrease in their expression was proportional to the length of cold exposure. A significant level of sequence variation exists among RsFLC alleles derived from a variety of Raphanus cultivars, suggesting that RsFLC genes have diverged considerably but still retain essential functions.

Additional key words

floral repressor flowering time orthologous gene RsFLC transcriptome 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, C.D., M.A. Koch, M. Mayer, K. Mummenhoff, S.L. O’Kane, Jr., S.I. Warwick, M.D. Windham, and I.A. Al-Shehbaz. 2006. Toward a global phylogeny of the Brassicaceae. Mol. Biol. Evol. 23:2142–2160.PubMedCrossRefGoogle Scholar
  2. Chalhoub, B., F. Denoeud, S. Liu, I.A. Parkin, H. Tang, X. Wang, J. Chiquet, H. Belcram, C. Tong, B. Samans, M. Correa, C. Da Silva, J. Just, C. Falentin, C.S. Koh, I. Le Clainche, M. Bernard, P. Bento, B. Noel, K. Labadie, A. Alberti, M. Charles, D. Arnaud, H. Guo, C. Daviaud, S. Alamery, K. Jabbari, M. Zhao, P.P. Edger, H. Chelaifa, D. Tack, G. Lassalle, I. Mestiri, N. Schnel, M.C. Le Paslier, G. Fan, V. Renault, P.E. Bayer, A.A. Golicz, S. Manoli, T.H. Lee, V.H. Thi, S. Chalabi, Q. Hu, C. Fan, R. Tollenaere, Y. Lu, C. Battail, J. Shen, C.H. Sidebottom, X. Wang, A. Canaguier, A. Chauveau, A. Berard, G. Deniot, M. Guan, Z. Liu, F. Sun, Y.P. Lim, E. Lyons, C.D. Town, I. Bancroft, X. Wang, J. Meng, J. Ma, J.C. Pires, G.J. King, D. Brunel, R. Delourme, M. Renard, J.M. Aury, K.L. Adams, J. Batley, R.J. Snowdon, J. Tost, D. Edwards, Y. Zhou, W. Hua, A.G. Sharpe, A.H. Paterson, C. Guan, and P. Wincker. 2014. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953.PubMedCrossRefGoogle Scholar
  3. Clough, S.J. and A.F. Bent. 1998. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16:735–743.PubMedCrossRefGoogle Scholar
  4. Helliwell, C.A., C.C. Wood, M. Robertson, W. James Peacock, and E.S. Dennis. 2006. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecularweight protein complex. Plant J. 46:183–192.PubMedCrossRefGoogle Scholar
  5. Johnston, J.S., A.E. Pepper, A.E. Hall, Z.J. Chen, G. Hodnett, J. Drabek, R. Lopez, and H.J. Price. 2005. Evolution of genome size in Brassicaceae. Ann. Bot. 95:229–235.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Kim, D.H., M.R. Doyle, S. Sung, and R.M. Amasino. 2009. Vernalization: Winter and the timing of flowering in plants. Annu. Rev. Cell. Dev. Biol. 25:277–299.PubMedCrossRefGoogle Scholar
  7. Kitashiba, H., F. Li, H. Hirakawa, T. Kawanabe, Z. Zou, Y. Hasegawa, K. Tonosaki, S. Shirasawa, A. Fukushima, S. Yokoi, Y. Takahata, T. Kakizaki, M. Ishida, S. Okamoto, K. Sakamoto, K. Shirasawa, S. Tabata, and T. Nishio. 2014. Draft sequences of the radish (Raphanus sativus L.) genome. DNA Res. doi:  10.1093/dnares/dsu014.Google Scholar
  8. Langmead, B. and S.L. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9:357–359.Google Scholar
  9. Lin, S.I., J.G. Wang, S.Y. Poon, C.L. Su, S.S. Wang, and T.J. Chiou. 2005. Differential regulation of FLOWERING LOCUS C expression by vernalization in cabbage and Arabidopsis. Plant Physiol. 137: 1037–1048.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Liu, S., Y. Liu, X. Yang, C. Tong, D. Edwards, I.A. Parkin, M. Zhao, J. Ma, J. Yu, S. Huang, X. Wang, J. Wang, K. Lu, Z. Fang, I. Bancroft, T.J. Yang, Q. Hu, X. Wang, Z. Yue, H. Li, L. Yang, J. Wu, Q. Zhou, W. Wang, G.J. King, J.C. Pires, C. Lu, Z. Wu, P. Sampath, Z. Wang, H. Guo, S. Pan, L. Yang, J. Min, D. Zhang, D. Jin, W. Li, H. Belcram, J. Tu, M. Guan, C. Qi, D. Du, J. Li, L. Jiang, J. Batley, A.G. Sharpe, B.S. Park, P. Ruperao, F. Cheng, N.E. Waminal, Y. Huang, C. Dong, L. Wang, J. Li, Z. Hu, M. Zhuang, Y. Huang, J. Huang, J. Shi, D. Mei, J. Liu, T.H. Lee, J. Wang, H. Jin, Z. Li, X. Li, J. Zhang, L. Xiao, Y. Zhou, Z. Liu, X. Liu, R. Qin, X. Tang, W. Liu, Y. Wang, Y. Zhang, J. Lee, H.H. Kim, F. Denoeud, X. Xu, X. Liang, W. Hua, X. Wang, J. Wang, B. Chalhoub, and A.H. Paterson. 2014. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat. Commun. 5:3930.PubMedGoogle Scholar
  11. Michaels, S.D. and R.M. Amasino. 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Michaels, S.D., Y. He, K.C. Scortecci, and R.M. Amasino. 2003. Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc. Natl. Acad. Sci. USA 100:10102–10107.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Okazaki, K., K. Sakamoto, R. Kikuchi, A. Saito, E. Togashi, Y. Kuginuki, S. Matsumoto, and M. Hirai. 2007. Mapping and characterization of FLC homologs and QTL analysis of flowering time in Brassica oleracea. Theor. Appl. Genet. 114:595–608.PubMedCrossRefGoogle Scholar
  14. Osborn, T.C., C. Kole, I.A. Parkin, A.G. Sharpe, M. Kuiper, D.J. Lydiate, and M. Trick. 1997. Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics 146:1123–1129.PubMedCentralPubMedGoogle Scholar
  15. Roberts, A. and L. Pachter. 2013. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat. Methods 10:71–73.PubMedCrossRefGoogle Scholar
  16. Schranz, M.E., P. Quijada, S.B. Sung, L. Lukens, R. Amasino, and T.C. Osborn. 2002. Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics 162:1457–1468.PubMedCentralPubMedGoogle Scholar
  17. Schulz, M.H., D.R. Zerbino, M. Vingron, and E. Birney. 2012. Oases: Robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28:1086–1092.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Searle, I., Y. He, F. Turck, C. Vincent, F. Fornara, S. Krober, R.A. Amasino, and G. Coupland. 2006. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes. Dev. 20:898–912.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Sheldon, C.C., D.T. Rouse, E.J. Finnegan, W.J. Peacock, and E.S. Dennis. 2000. The molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC). Proc. Natl. Acad. Sci. USA 97:3753–3758.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Shindo, C., M.J. Aranzana, C. Lister, C. Baxter, C. Nicholls, M. Nordborg, and C. Dean. 2005. Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol. 138:1163–1173.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Tadege, M., C.C. Sheldon, C.A. Helliwell, P. Stoutjesdijk, E.S. Dennis, and W.J. Peacock. 2001. Control of flowering time by FLC orthologues in Brassica napus. Plant J. 28:545–553.PubMedCrossRefGoogle Scholar
  22. Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725–2729.CrossRefGoogle Scholar
  23. Wang, X., H. Wang, J. Wang, R. Sun, J. Wu, S. Liu, Y. Bai, J.H. Mun, I. Bancroft, F. Cheng, S. Huang, X. Li, W. Hua, J. Wang, X. Wang, M. Freeling, J.C. Pires, A.H. Paterson, B. Chalhoub, B. Wang, A. Hayward, A.G. Sharpe, B.S. Park, B. Weisshaar, B. Liu, B. Li, B. Liu, C. Tong, C. Song, C. Duran, C. Peng, C. Geng, C. Koh, C. Lin, D. Edwards, D. Mu, D. Shen, E. Soumpourou, F. Li, F. Fraser, G. Conant, G. Lassalle, G.J. King, G. Bonnema, H. Tang, H. Wang, H. Belcram, H. Zhou, H. Hirakawa, H. Abe, H. Guo, H. Wang, H. Jin, I.A. Parkin, J. Batley, J.S. Kim, J. Just, J. Li, J. Xu, J. Deng, J.A. Kim, J. Li, J. Yu, J. Meng, J. Wang, J. Min, J. Poulain, J. Wang, K. Hatakeyama, K. Wu, L. Wang, L. Fang, M. Trick, M.G. Links, M. Zhao, M. Jin, N. Ramchiary, N. Drou, P.J. Berkman, Q. Cai, Q. Huang, R. Li, S. Tabata, S. Cheng, S. Zhang, S. Zhang, S. Huang, S. Sato, S. Sun, S.J. Kwon, S.R. Choi, T.H. Lee, W. Fan, X. Zhao, X. Tan, X. Xu, Y. Wang, Y. Qiu, Y. Yin, Y. Li, Y. Du, Y. Liao, Y. Lim, Y. Narusaka, Y. Wang, Z. Wang, Z. Li, Z. Wang, Z. Xiong, Z. Zhang, and C. Brassica rapa Genome Sequencing Project. 2011. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43:1035–1039.PubMedCrossRefGoogle Scholar
  24. Xiao, D., J.J. Zhao, X.L. Hou, R.K. Basnet, D.P. Carpio, N.W. Zhang, J. Bucher, K. Lin, F. Cheng, X.W. Wang, and G. Bonnema. 2013. The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks. J. Exp. Bot. 64:4503–4516.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Yang, T.J., J.S. Kim, S.J. Kwon, K.B. Lim, B.S. Choi, J.A. Kim, M. Jin, J.Y. Park, M.H. Lim, H.I. Kim, Y.P. Lim, J.J. Kang, J.H. Hong, C.B. Kim, J. Bhak, I. Bancroft, and B.S. Park. 2006. Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18:1339–1347.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Zerbino, D.R. and E. Birney. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18:821–829.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Zhao, J., V. Kulkarni, N. Liu, D.P. Del Carpio, J. Bucher, and G. Bonnema. 2010. BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rapa. J. Exp. Bot. 61:1817–1825.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Zhong, S., J.G. Joung, Y. Zheng, Y.R. Chen, B. Liu, Y. Shao, J.Z. Xiang, Z. Fei, and J.J. Giovannoni. 2011. High-throughput illumina strand-specific RNA sequencing library preparation. Cold Spring Harb. Protoc. 2011:940–949.PubMedCrossRefGoogle Scholar
  29. Zou, X., I. Suppanz, H. Raman, J. Hou, J. Wang, Y. Long, C. Jung, and J. Meng. 2012. Comparative analysis of FLC homologues in Brassicaceae provides insight into their role in the evolution of oilseed rape. PLoS One 7:e45751.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Korean Society for Horticultural Science and Springer-Verlag GmbH 2014

Authors and Affiliations

  • Gibum Yi
    • 1
  • Hyerang Park
    • 2
  • June-Sik Kim
    • 3
  • Won Byoung Chae
    • 4
  • Suhyoung Park
    • 4
  • Jin Hoe Huh
    • 1
    • 2
    • 3
  1. 1.Plant Genomics and Breeding InstituteSeoul National UniversitySeoulKorea
  2. 2.Department of Plant ScienceSeoul National UniversitySeoulKorea
  3. 3.Research Institute for Agriculture and Life SciencesSeoul National UniversitySeoulKorea
  4. 4.Department of Horticultural Crop ResearchNational Institute of Horticultural & Herbal Science, Rural Development AdministrationSuwonKorea

Personalised recommendations