Horticulture, Environment, and Biotechnology

, Volume 55, Issue 6, pp 506–513 | Cite as

Growth and antioxidant phenolic compounds in cherry tomato seedlings grown under monochromatic light-emitting diodes

  • Eun-Young Kim
  • Sin-Ae Park
  • Bong-Ju Park
  • Yi Lee
  • Myung-Min Oh
Research Report


Light-emitting diodes (LEDs) can be used in closed-type plant production systems as an artificial light source. Here, we determined the effects of monochromatic LEDs on the growth and production of phenolic antioxidants in cherry tomato seedlings (Solanum lycopersicum L. ‘Cuty’). Two week-old seedlings germinated under normal growing conditions were transplanted into a growth chamber equipped with various monochromatic LEDs and fluorescent lamps (control), and cultivated for 4 weeks. Fresh weights of shoots and roots under LED treatment, especially, red or green, were higher than those under the control light at 4 weeks. The SPAD value of seedlings grown under blue LEDs was significantly lower than in seedlings grown under other LEDs. The plant height, stem length, and internode length of tomato seedlings grown under blue LEDs were the highest. Blue LEDs induced 1.5–2.2-fold higher stem length than red and white LEDs. Expansin gene expression was the highest under blue LEDs, consistent with the effect on stem length. Blue LEDs stimulated the biosynthesis of total phenolics, antioxidants, and total flavonoids in tomato seedlings. Specifically, the antioxidant capacity of seedlings grown under blue LEDs was 2.1-folds higher than that in seedlings grown under green LEDs. Thus, manipulating light quality using LEDs is a crucial factor for growth and antioxidant production in cherry tomato seedlings.

Additional key words

expansins flavonoid concentration light quality stem elongation Solanum lycopersicum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ainsworth, E.A. and K.M. Gillespie. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols 2:875–877.PubMedCrossRefGoogle Scholar
  2. Alexieva, V., I. Sergiev, S. Mapelli, and E. Karanov. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 24:1337–1344.CrossRefGoogle Scholar
  3. Awika, J.M., L.W. Rooney, X. Wu, R.L. Prior, and L. Cisneros-Zevallos. 2003. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J. Agr. Food Chem. 51: 6657–6662.CrossRefGoogle Scholar
  4. Bergougnoux, V. 2014. The history of tomato: From domestication to biopharming. Biotechnol. Advances 32:170–189.CrossRefGoogle Scholar
  5. Buso, G.S.C. and F.A. Bliss. 1988. Variability among lettuce cultivars grown at two levels of available phosphorus. Plant Soil 111:67–73.CrossRefGoogle Scholar
  6. Buwalda, F., E.J. van Henten, A. de Gelder, J. Bontsema, and J. Hemming. 2006. Toward an optimal control strategy for sweet pepper cultivation. 1. A dynamic crop model. Acta Hort. 718:391–398.Google Scholar
  7. Carvalho, R.F., M. Takaki, and R.A. Azevedo. 2011. Plant pigments: The many face of light perception. Acta Physiol. Plant. 33:241–248.CrossRefGoogle Scholar
  8. Cosgrove, D.J. 2000. Loosening of plant cell walls by expansins. Nature 407:321–326.PubMedCrossRefGoogle Scholar
  9. Dewanto, V., X. Wu, K.K. Adom, and R.H. Liu. 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agr. Food Chem. 51:615–622.Google Scholar
  10. Ebisawa, M., K. Shoji, M. Kato, K. Shimomura, F. Goto, and T. Yoshihara. 2008. Supplementary ultraviolet radiation B together with blue light at night increased qercetin content and flavonol systhase gene expression in leaf lettuce (Lactuca sativa L.). Environ. Control Biol. 46:1–11.CrossRefGoogle Scholar
  11. Eisinger, W.R., R.A. Bogomolni, and L. Taiz. 2003. Interactions between a blue-green reversible photoreceptor and a separate UV-B receptor in stomatal guard cells. Amer. J. Bot. 90:1560–1566.CrossRefGoogle Scholar
  12. Garcia-Closas, R., A. Berenguer, M.J. Tormo, M.J. Sanchez, J.R. Quiros, C. Navarro, R. Amaud, M. Dorronsoro, M.D. Chirlaque, A. Barricarte, E. Ardanaz, P. Amiano, C. Martinez, A. Agudo, and C.A. Gonzalez. 2004. Dietary sources of vitamin C, vitamin E, and specific carotenoids in Spain. Brit. J. Nutr. 91:1005–1011.PubMedCrossRefGoogle Scholar
  13. Jeong, S.W., S. Park, J.S. Jin, O.N. Seo, G.S. Kim, Y.H. Kim, H. Bae, G. Lee, S.T. Kim, W.S. Lee, and S.C. Shin. 2012. Influences of four different light-emitting diode lights on flowering and polyphenol variations in the leaves of chrysanthemum (Chrysanthemum morifolium). J. Agr. Food Chem. 60:9793–9800.CrossRefGoogle Scholar
  14. Johkan, M.H., K. Shoji, F. Goto, S. Hahida, and T. Yoshihara. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:1809–1814.Google Scholar
  15. Kim, H.H., G.D. Goins, R.M. Wheeler, and J.C. Sager. 2004a. Stomatal conductance of lettuce grown under or exposed to different light quality. Ann. Bot. 94:691–697.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Kim, H.H., G.D. Goins, R.M. Wheeler, and J.C. Sager. 2004b. Greenlight supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. HortScience 39:1617–1622.PubMedGoogle Scholar
  17. Kim, S.J., E.J. Hahn, J.W. Heo, and K.Y. Paek. 2004c. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Sci. Hort. 101:143–151.CrossRefGoogle Scholar
  18. Klein, R.M., P.C. Edsall, and A.C. Gentile. 1965. Effects of near ultraviolet and green radiations on plant growth. Plant Physiol. 40:903–906.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Kozai, T., C. Chun, and K. Ohyama. 2004. Closed systems with lamps for commercial production of transplants using minimal resources. Acta Hort. 630:239–254.Google Scholar
  20. Lian, M.L., H.N. Murthy, and K.Y. Paek. 2002. Effect of light emitting diodes (LEDs) on the in vitro induction and growth of bulblets of Lillum oriental hybrid ‘Pesaro’. Sci. Hort. 94:365–370.CrossRefGoogle Scholar
  21. Liu, X.Y., S.R. Guo, T.T. Chang, Z.G. Xu, and T. Takafumi. 2012. Regulation of the growth and photosynthesis of cherry tomato seedlings by different light irradiations of light emitting diodes (LED). Afr. J. Biotechnol. 11:6169–6177.Google Scholar
  22. Lee, J.S., H.I. Lee, and Y.H. Kim. 2012. Seedling quality and early yield after transplanting of paprika nursed under light-emitting diodes, fluorescent lamps and natural light. J. Bio-Environ. Control 21:220–227.Google Scholar
  23. Massa, G.D., H.H. Kim, R.M. Wheeler, and C.A. Mitchell. 2008. Plant productivity in response to LED lighting. HortScience 43:1951–2008.Google Scholar
  24. Matsuda, R., K. Ohashi-Kaneko, K. Fujiwara, E. Goto, and K. Kurata. 2004. Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light. Plant Cell Physiol. 45:1870–1874.PubMedCrossRefGoogle Scholar
  25. Miller, N.J. and C.A. Rice-Evans. 1996. Spectrophotometric determination of antioxidant activity. Redox Rep. 2:161–171.Google Scholar
  26. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405–410.PubMedCrossRefGoogle Scholar
  27. Moran, J.F., M. Becana, I. Iturbe-Ormaetxe, S. Frechilla, R.V. Klucas, and P. Aparicio-Tejo. 1994. Drought induces oxidative stress in pea plants. Planta 194:346–352.CrossRefGoogle Scholar
  28. Nhut, D.T., T. Takamura, H. Watanabe, K. Okamoto, and M. Tanaka. 2003. Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs). Plant Cell Tissue Org. Cult. 73:43–52.CrossRefGoogle Scholar
  29. Oh, M.-M., H.N. Trick, and C.B. Rajashekar. 2009. Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. J. Plant Physiol. 166:180–191.PubMedCrossRefGoogle Scholar
  30. Rivero, R.M., J.M. Ruiz, and L. Romero. 2003. Can grafting in tomato plants strengthen resistance to thermal stress? J. Sci. Food Agr. 83:1315–1319.CrossRefGoogle Scholar
  31. Ryan, K.G., E.E. Swinny, K.R. Markham, and C. Winefield. 2002. Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry 59:23–32.PubMedCrossRefGoogle Scholar
  32. Saebo, A., T. Krekling and M. Appelgren. 1995. Light quality affects photosynthesis and leaf anatomy of brich plantlets in vitro. Plant Cell Tissue Org. Cult. 41:177–185.CrossRefGoogle Scholar
  33. Sasidharan, R., C.C. Chinnappa, L.A.C.J. Voesenek, and R. Pierik. 2009. A molecular basis for the physiological variation in shade avoidance responses. Plant Signaling Behavior 4:528–529.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Sasidharan, R., C.C. Chinnappa, M. Staal, J.T.M. Elzenga, R. Yokoyama, K. Nishitani, L.A.C.J. Voesenek, and R. Pierik. 2010. Light quality-mediated petiole elongation in Arabidopsis during shade avoidance involves cell wall modification by xyloglucan endotransglucosylase/hydrolases. Plant Physiol. 154:978–990.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Son, K.H., J.H. Park, D. Kim, and M.-M. Oh. 2012. Leaf shape index, growth, and phytochemicals in two leaf lettuce cultivars grown under monochromatic light-emitting diodes. Kor. J. Hort. Sci. Technol. 30:664–672.Google Scholar
  36. Son, K.H. and M.-M. Oh. 2013. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience 48:988–995.Google Scholar
  37. Talbott, L.D., G. Nikolova, A. Ortiz, I. Shmayevich, and E. Zeiger. 2002. Green light reversal of blue-light-stimulated stomatal opening is found in a diversity of plant species. Amer. J. Bot. 89:366–368.CrossRefGoogle Scholar
  38. Um, Y.C., Y.A. Jang, J.G. Lee, S.Y. Kim, S.R. Cheong, S.S. Oh, S.H. Cha, and S.C. Hong. 2009. Effects of selective light sources on seedling quality of tomato and cucumber in closed nursery system. J. Bio-Environ. Control 18:370–376.Google Scholar
  39. Wang, H., M. Gu, J. Cui, K. Shi, T. Zhou, and J. Yu. 2009. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. J. Photochem. Photobiol. B. 96:30–37.PubMedCrossRefGoogle Scholar
  40. Whitelam, G. and K. Halliday. 2007. Light and plant development. Blackwell Publishing, Oxford, UK.CrossRefGoogle Scholar

Copyright information

© Korean Society for Horticultural Science and Springer-Verlag GmbH 2014

Authors and Affiliations

  • Eun-Young Kim
    • 1
    • 2
  • Sin-Ae Park
    • 3
  • Bong-Ju Park
    • 1
  • Yi Lee
    • 4
  • Myung-Min Oh
    • 1
    • 2
  1. 1.Division of Animal, Horticulture, and Food SciencesChungbuk National UniversityCheongjuKorea
  2. 2.Brain Korea 21 Center for Bio-resource DevelopmentChungbuk National UniversityCheongjuKorea
  3. 3.Department of Environmental Health ScienceKonkuk UniversitySeoulKorea
  4. 4.Department of Industrial Plant Science and TechnologyChungbuk National UniversityCheongjuKorea

Personalised recommendations