Advertisement

Horticulture, Environment, and Biotechnology

, Volume 53, Issue 1, pp 49–56 | Cite as

Dual-color FISH karyotype and rDNA distribution analyses on four Cucurbitaceae species

  • Nomar Espinosa Waminal
  • Hyun Hee Kim
Research Report Genetics and Breeding

Abstract

Karyotype and ribosomal DNA distribution on four Cucurbitaceae species was analyzed through dual-color fluorescence in situ hybridization (FISH) using 5S and 45S rDNA probes. Chromosome sizes varied slightly among the species with Cucumis sativus relatively the largest (∼2.5 μm) and Momordica charantia the smallest (∼1 μm). In Cucumis sativus L. (2n = 14), the 45S rDNA hybridized on the pericentromeric area of five chromosomes (metacentric a, b, c, g, and submetacentric d) and the 5S rDNA on the region proximal to the centromere of the short arm of chromosome e. In Luffa cylindrica (L.) Roem. (2n = 26), the 45S rDNA hybridized on the distal regions of the short arms of five chromosomes (metacentric a, b, c, f, and submetacentric d) and the 5S rDNA on the region proximal to the centromere of the short arm of chromosome e. In Lagenaria siceraria (Molina) Standl. (2n = 22), the 45S rDNA hybridized on the distal regions of the short arms of two chromosomes (submetacentric b and metacentric e) and the 5S rDNA juxtaposed with the 45S rDNA signal in a region proximal to the centromere on chromosome e. In Momordica charantia L. (2n = 22), the 45S rDNA hybridized on the majority of the short arms of two metacentric chromosomes (d and k) and the 5S rDNA on the proximal region of the short arm of chromosome e. The interphase and metaphase rDNA distribution and FISH karyotype analyses of the four species showed the possible fate of rDNAs through the process that lead to the interspecific variations among the cucurbits. These results will be useful in elucidating the phylogenetic relationships among Cucurbitaceae species.

Additional key words

5S and 45S rDNA Cucumis sativus dual-color fluorescence in situ hybridization Lagenaria siceraria Luffa cylindrica Momordica charantia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bhaduri, P.N. and P.C. Bose. 1947. Cyto-genetical investigations in some common cucurbits, with special reference to fragmentation of chromosomes as a physical basis of speciation. J. Genet. 48: 237–256.PubMedCrossRefGoogle Scholar
  2. Chen, J.F., J.E. Staub, J.W. Adelberg, and J. Jiang. 1999. Physical mapping of 45S rRNA genes in Cucumis species by fluorescence in situ hybridization. Can. J. Bot. 77:389–393.Google Scholar
  3. Chung, S.M., J.E. Staub, and J.F. Chen. 2006. Molecular phylogeny of Cucumis species as revealed by consensus chloroplast SSR marker length and sequence variation. Genome 49:219–229.PubMedCrossRefGoogle Scholar
  4. Coen, E.S. and G.A. Dover. 1983. Unequal exchanges and the coevolution of X and Y rDNA arrays in Drosophila melanogaster. Cell 33:849–855.PubMedCrossRefGoogle Scholar
  5. Datson, P.M. and B.G. Murray. 2006. Ribosomal DNA locus evolution in Nemesia: Transposition rather than structural rearrangement as the key mechanism? Chromosome Res. 14:845–857.PubMedCrossRefGoogle Scholar
  6. de Melo, N.F. and M. Guerra. 2003. Variability of the 5S and 45S rDNA sites in Passiflora L. species with distinct base chromosome numbers. Ann. Bot. 92:309–316.PubMedCrossRefGoogle Scholar
  7. Dong, F., J. Song, S.K. Naess, J.P. Helgeson, C. Gebhardt, and J. Jiang. 2000. Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor. Appl. Genet. 101:1001–1007.CrossRefGoogle Scholar
  8. Dover, G.A. 1986. Molecular drive in multigene families: How biological novelities arise, spread, and assimilated. Trends Genet. 2:159–165.CrossRefGoogle Scholar
  9. Dover, G.A. 1989. Linkage disequilibrium and molecular drive in the rDNA gene family. Genetics 122:249–252.PubMedGoogle Scholar
  10. Drouin, G. and M. Moniz de Sá. 1995. The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. Mol. Biol. Evol. 12:481–493.PubMedGoogle Scholar
  11. Dubcovsky, J. and J. Dvorak. 1995. Ribosomal RNA multigene loci: Nomads of the Triticeae genomes. Genetics 140:1367–1377.PubMedGoogle Scholar
  12. Dutt, B. and R.P. Roy. 1969. Cytogenetical studies in the interspecific hybrid of Luffa cylindrica L. and L. graveolens Roxb. Genetica 40:7–18.CrossRefGoogle Scholar
  13. Dutt, B. and R.P. Roy. 1971. Cytogenetic investigations in Cucurbitaceae I. Interspecific hybridization in Luffa. Genetica 42:139–156.CrossRefGoogle Scholar
  14. Eickbush, T.H. and D.G. Eickbush. 2007. Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175: 477–485.PubMedCrossRefGoogle Scholar
  15. Fukui, K. 2005. Recent development of image analysis methods in plant chromosome research. Cytogenet. Genome Res. 109:83–89.PubMedCrossRefGoogle Scholar
  16. Ganal, M., I. Riede, and V. Hemleben. 1986. Organization and sequence analysis of two related satellite DNAs in cucumber (Cucumis sativus L.). J. Mol. Evol. 23:23–30.CrossRefGoogle Scholar
  17. Gerlach, W.L. and J.R. Bedbrook. 1979. Cloning and characterization of ribosomal rDNA genes from wheat and barley. Nucleic Acids Res. 7:1869–1885.PubMedCrossRefGoogle Scholar
  18. Han, Y.H., Z.H. Zhang, C. Liu, J. Liu, S.W. Huang, J.M. Jiang, and W.W. Jin. 2009. Centromere repositioning in cucurbit species: Implication of the genomic impact from centromere activation and inactivation. Proc. Natl. Acad. Sci. 106:14937–14941.PubMedCrossRefGoogle Scholar
  19. Hanson, R.E., M.N. Islam-Faridi, E.A. Percival, C.F. Crane, Y. Ji, T.D. McKnight, D.M. Stelly, and H.J. Price. 1996. Distribution of 5S and 18S–28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestors. Chromosoma 105:55–61.PubMedCrossRefGoogle Scholar
  20. Hoshi, Y., W. Plader, and S. Malepszy. 1999. Physical mapping of 45S rRNA gene loci in the cucumber (Cucumis sativus L.) using fluorescence in situ hybridization. Caryologia 52:49–57.Google Scholar
  21. Huang, S., R. Li, Z. Zhang, L. Li, X. Gu, W. Fan, W.J. Lucas, X. Wang, B. Xie, P. Ni, Y. Ren, H. Zhu, J. Li, K. Lin, W. Jin, Z. Fei, G. Li, J. Staub, A. Kilian, E.A.G. van der Vossen, Y. Wu, J. Guo, J. He, Z. Jia, Y. Ren, G. Tian, Y. Lu, J. Ruan, W. Qian, M. Wang, Q. Huang, B. Li, Z. Xuan, J. Cao, Asan, Z. Wu, J. Zhang, Q. Cai, Y. Bai, B. Zhao, Y. Han, Y. Li, X. Li, S. Wang, Q. Shi, S. Liu, W.K. Cho, J.-Y. Kim, Y. Xu, K. Heller-Uszynska, H. Miao, Z. Cheng, S. Zhang, J. Wu, Y. Yang, H. Kang, M. Li, H. Liang, X. Ren, Z. Shi, M. Wen, M. Jian, H. Yang, G. Zhang, Z. Yang, R. Chen, S. Liu, J. Li, L. Ma, H. Liu, Y. Zhou, J. Zhao, X. Fang, G. Li, L. Fang, Y. Li, D. Liu, H. Zheng, Y. Zhang, N. Qin, Z. Li, G. Yang, S. Yang, L. Bolund, K. Kristiansen, H. Zheng, S. Li, X. Zhang, H. Yang, J. Wang, R. Sun, B. Zhang, S. Jiang, J. Wang, Y. Du, and S. Li. 2009. The genome of the cucumber, Cucumis sativus L. Nat. Genet. 41:1275–1281.PubMedCrossRefGoogle Scholar
  22. Hwang, Y.J., H.H. Kim, S.J. Kwon, T.J. Yang, H.C. Ko, B.S. Park, J.D. Chung, and K.B. Lim. 2009. Karyotype analysis of three Brassica species using five different repetitive DNA markers by fluorescence in situ hybridization. Kor. J. Hort. Sci. Technol. 27: 456–463.Google Scholar
  23. Kato, A., J.C. Lamb, and J.A. Birchler. 2004. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc. Natl. Acad. Sci. 101:13554–13559.PubMedCrossRefGoogle Scholar
  24. Koo, D.H., H.W. Choi, J. Cho, Y. Hur, and J.W. Bang. 2005. A high-resolution karyotype of cucumber (Cucumis sativus L. ‘Winter Long’) revealed by C-banding, pachytene analysis, and RAPD-aided fluorescence in situ hybridization. Genome 48:534–540.PubMedCrossRefGoogle Scholar
  25. Koo, D.H., Y. Hur, D.C. Jin, and J.W. Bang. 2002. Karyotype analysis of a Korean cucumber cultivar (Cucumis sativus L. cv. Winter Long) using C-banding and bicolor fluorescence in situ hybridization. Mol. Cells 13:413–418.PubMedGoogle Scholar
  26. Koo, D.H., Y.W. Nam, D. Choi, J.W. Bang, H. de Jong, and Y. Hur. 2010. Molecular cytogenetic mapping of Cucumis sativus and C. melo using highly repetitive DNA sequences. Chromosome Res. 18:325–336.PubMedCrossRefGoogle Scholar
  27. Kubista, M., B. Åkerman, and B. Nordén. 1987. Characterization of interaction between DNA and 4′,6-diamidino-2-phenylindole by optical spectroscopy. Biochemistry 26:4545–53.PubMedCrossRefGoogle Scholar
  28. Leitch, I.J. and J.S. Heslop-Harrison. 1993. Physical mapping of sites of 5S rDNA sequences and one site of the α-amylase-2 gene in barley (Hordeum vulgare). Genome 36:517–523.PubMedCrossRefGoogle Scholar
  29. Levan, A., K. Fredga, and A.A. Sandberg. 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220.CrossRefGoogle Scholar
  30. Levsky, J.M. and R.H. Singer. 2003. Fluorescence in situ hybridization: past, present and future. J. Cell Sci. 116:2833–2838.PubMedCrossRefGoogle Scholar
  31. Lim, K.B., H. de Jong, T.J. Yang, J.Y. Park, S.J. Kwon, J.S. Kim, M.H. Lim, J.A. Kim, M. Jin, Y.M. Jin, S.H. Kim, Y.P. Lim, J.W. Bang, H.I. Kim, and B.S. Park. 2005. Characterization of rDNAs and tandem repeats in the heterochromatin of Brasicca rapa. Mol. Cells 19:436–444.PubMedGoogle Scholar
  32. Long, E.O. and I.B. Dawid. 1980. Repeated genes in eukaryotes. Ann. Rev. Biochem. 49:727–764.PubMedCrossRefGoogle Scholar
  33. Maluszynska, J. and J.S. Heslop-Harrison. 1991. Localization of tandemly repeated DNA sequences in Arabidopsis thaliana. Plant J. 1:159–166.CrossRefGoogle Scholar
  34. Martins, C. and A.P. Wasko. 2004. Organization and evolution of 5S ribosomal DNA in the fish genome, p. 335–363. In: C.R. Williams (ed.). Focus on Genome Research. Nova Science Publishers, Inc. Hauppauge NY.Google Scholar
  35. Martins, C. and P.M. Galetti, Jr. 1999. Chromosomal localization of 5S rDNA genes in Leporinus fish (Anostomidae, Characiformes). Chromosome Res. 7:363–367.PubMedCrossRefGoogle Scholar
  36. Mondin, M., J.A. Santos-Serejo, and M.L.R. Aguiar-Perecin. 2007. Karyotype characterization of Crotalaria juncea (L.) by chromosome banding and physical mapping of 18S-5.8S-26S and 5S rRNA gene sites. Genet. Mol. Biol. 30:65–72.CrossRefGoogle Scholar
  37. Ng, T.J. 1993. New opportunities in the Cucurbitaceae, p. 538–546. In: J. Janick and J.E. Simon (eds.). New Crops. Wiley, New York.Google Scholar
  38. Ohmido, N., K. Fukui, and T. Kinoshita. 2010. Recent advances in rice genome and chromosome structure research by fluorescence in situ hybridization (FISH). Proc. Jpn. Acad., Ser. B 86:103–116.CrossRefGoogle Scholar
  39. Ramachandran, C. and R.K.J. Narayan. 1990. Satellite DNA specific to knob heterochromatin in Cucumis metuliferus (Cucurbitaceae). Genetica 80:129–138.CrossRefGoogle Scholar
  40. Raskina, O., A. Belyayev, and E. Nevo. 2004. Activity of the En/ Spm-like transposons in meiosis as a base for chromosome repatterning in a small, isolated, peripheral population of Aegilops speltoides Tausch. Chromosome Res. 12:153–161.PubMedCrossRefGoogle Scholar
  41. Ren, Y., Z. Zhang, J. Liu, J.E. Staub, Y. Han, Z. Cheng, X. Li, J. Lu, H. Miao, H. Kang, B. Xie, X. Gu, X. Wang, Y. Du, W. Jin, and S. Huang. 2009. An integrated genetic and cytogenetic map of the cucumber genome. PLoS ONE 4:e5795.PubMedCrossRefGoogle Scholar
  42. Robinson, R.W. and D.S. Decker-Walters. 1999. Cucurbits. CAB International, Wallingford, Oxford, UK.Google Scholar
  43. Roy, V., L. Monti-Dedieu, N. Chaminade, S. Sijak-Yakovlev, S. Aulard, F. Lemeunier, and C. Montchamp-Moreau. 2005. Evolution of the chromosomal location of rDNA genes in two Drosophila species subgroups: Ananassae and melanogaster. Heredity 94:388–395.PubMedCrossRefGoogle Scholar
  44. Sadder, M.T. and G. Weber. 2001. Karyotype of maize (Zea mays L.) mitotic metaphase chromosomes as revealed by fluorescence in situ hybridization (FISH) with cytogenetic DNA markers. Plant Mol. Biol. Rep. 19:117–123.CrossRefGoogle Scholar
  45. Schubert, I. and U. Wobus. 1985. In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma (Berl) 92: 143–148.CrossRefGoogle Scholar
  46. Scoles, G.J., B.S. Gill, Z.Y. Xin, B.C. Clarke, C.L. Mcintyre, C. Chapman, and R. Appels. 1988. Frequent duplication and deletion events in the 5S RNA genes and the associated spacer regions of the Triticeae. Plant Syst. Evol. 160:105–122.CrossRefGoogle Scholar
  47. Shishido, R., Y. Sano, and K. Fukui. 2000. Ribosomal DNAs: An exception to the conservation of gene order in rice genomes. Mol. Gen. Genet. 263:586–591.PubMedCrossRefGoogle Scholar
  48. Singh, M., R. Kumar, N.S. Nagpure, B. Kushwaha, I. Mani, U.K. Chauhan, and W.S. Lakra. 2009. Population distribution of 45S and 5S rDNA in golden mahseer, Tor putitora: Population-specific FISH marker. J. Genet. 88:315–320.PubMedCrossRefGoogle Scholar
  49. Sultana, S., S.H. Lee, J.W. Bang, and H.W. Choi. 2010. Physical mapping of rRNA gene loci and inter-specific relationships in wild Lilium distributed in Korea. J. Plant Biol. 53:433–443.CrossRefGoogle Scholar
  50. Sumner, A.T. 1990. Chromosome banding. London, Unwin Hyman.Google Scholar
  51. Vasconcelos, S., A.A. Souza, C.L. Gusmão, M. Milani, A.M. Benko-Iseppon, and A.C. Brasileiro-Vidal. 2010. Heterochromatin and rDNA 5S and 45S sites as reliable cytogenetic markers for castor bean (Ricinus communis, Euphorbiaceae). Micron. 41:746–753.PubMedCrossRefGoogle Scholar
  52. Whitaker, T.W. 1933. Cytological and phylogenetic studies in the Cucurbitaceae. Bot. Gaz. 94:780–790.CrossRefGoogle Scholar
  53. Wiegant, J., T. Ried, P.M. Nederlof, M. van der Ploeg, H.J. Tanke, and A.K. Raap. 1991. In situ hybridization with fluoresceinated DNA. Nucleic Acids Res. 19:3237–3241.PubMedCrossRefGoogle Scholar
  54. Xu, Y.H., F. Yang, Y.L. Cheng, L. Ma, J.B. Wang, and L.J. Li. 2007. Comparative analysis of rDNA distribution in metaphase chromosomes of Cucurbitaceae species. Hereditas (Beijing) 29: 614–620.CrossRefGoogle Scholar

Copyright information

© Korean Society for Horticultural Science 2012

Authors and Affiliations

  1. 1.Plant Biotechnology Institute, Department of Life ScienceSahmyook UniversitySeoulKorea

Personalised recommendations