Advertisement

Horticulture, Environment, and Biotechnology

, Volume 53, Issue 2, pp 167–174 | Cite as

Pollen allergic risk assessment of genetically modified virus resistant pepper and functional Chinese cabbage

  • Ju Suk Lee
  • Ye-Jin Kim
  • Ki-Hyun Ryu
  • Tae-Ho Han
  • Kuen-Woo Park
  • Kyu Hwan Chung
  • Chan Lee
  • Gung-Pyo Lee
  • Sun-Hyung Kim
  • Jin-Sung Hong
  • Young-Doo Park
  • Eun-Taeck Woo
  • Sung-Chul Park
  • Dae-Yeul Son
Research Report
  • 344 Downloads

Abstract

Pollen of genetically modified (GM) pepper containing the gene for cucumber mosaic virus (CMV) coat protein (CP) and GM Chinese cabbage with high phenylethylisothiocyanate (PEITC) content was investigated for assessment of allergic risk. Amino acid (AA) sequences of the inserted gene products of GM virus resistant pepper and GM Chinese cabbage with high PEITC content were compared with those of known allergens. No known allergen greater than 35% AA sequence homology, over 80 AA window or more than 8 consecutive identical AA was found. Protein patterns of GM/non-GM pepper and Chinese cabbage pollen extracts in SDS-PAGE analysis showed the same distribution of protein bands among the GM and non-GM pepper or Chinese cabbage, respectively. Sera from pollen allergic patients showed some IgE reactivity via immunoblotting and ELISA; however, no differences were observed between the pollen of GM and non-GM pepper or Chinese cabbage, respectively. Based on these results, we conclude that pollens of the virus resistant GM pepper and GM Chinese cabbage with high PEITC have no differences in their protein composition or allergenicity relative to non-GM pepper and Chinese cabbage.

Additional key words

allergy cucumber mosaic virus (CMV) GM phenylethylisothiocyanate (PEITC) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bang, S.N., Y.S. Jung, S.J. Eom, G.B. Kim, K.H. Chung, G.P. Lee, D.Y. Son, K.W. Park, J.S. Hong, K.H. Ryu, and C. Lee. 2012. Assessment of the cucumber mosaic virus coat protein by expression evaluation in a genetically modified pepper and Escherichia coli BL21. J. Food Biochem. (in press).Google Scholar
  2. Bradford, M.M. 1976. A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem. 72:248–254.PubMedCrossRefGoogle Scholar
  3. Bruce, M.C. 2002. Food safety evaluation of crops produced through biotechnology. J. Amer. Coll. Nutr. 21:166–173.Google Scholar
  4. Codex. 2009. Foods derived from modern biotechnology. 2nd ed. Codex Alimentarius Commission, Rome, Italy. ftp://ftp.fao.org/codex/Publications/Booklets/Biotech/Biotech_2009e.pdf.Google Scholar
  5. Cohen, J.H., A.R. Kristal, and J.L. Stanford. 2000. Fruit and vegetable intakes and prostate cancer risk. J. Natl. Cancer Inst. 92:61–68.PubMedCrossRefGoogle Scholar
  6. Faulkner, K., R. Mithen, and G. Williamson. 1998. Selective increase of the potential anticarcinogen 4 methylsulfphinylbutyl glucosinolate in broccoli. Carcinogenesis 19:605–609.PubMedCrossRefGoogle Scholar
  7. Flavell, R.B., E. Dart, R.L. Fuchs, and R.T. Fraley. 1992. Selectable marker genes: Safe for plants? Bio. Technol. 10:141–144.Google Scholar
  8. Fuchs, R.L., J.E. Ream, B.G. Hammond, M.W. Naylor, R.M. Leimgruber, and S.A. Berberich. 1993. Safety assessment of the neomycin phosphotransferase II (npt-II) protein. Bio. Technol. 11:1543–1547.Google Scholar
  9. Goldstein, D.A., B. Tinland, L.A. Gilbertson, J.M. Staub, G.A. Bannon, R.E. Goodman, R.L. McCoy, and A. Silvanovich. 2005. Human safety and genetically modified plants: a review of antibiotic resistance markers and future transformation selection technologies. J. Appl. Microbiol. 99:7–23.PubMedCrossRefGoogle Scholar
  10. James, C. 2009. Executive summary of global status of commercialized Biotech/GM crops: 2009. ISAAA Briefs. 2009, No. 41. ISAAA: Ithaca, NY, USAGoogle Scholar
  11. Kim, H.S., S.H. Kim, Y.D. Park. 2003. Development of rescue cloning vector with phosphinothricin resistant gene for effective T-DNA tagging. Kor. J. Hort. Sci. 44:407–411.Google Scholar
  12. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.PubMedCrossRefGoogle Scholar
  13. Lee, M.K., H.S. Kim, J.S. Kim, S.H. Kim, and Y.D. Park. 2004. Agrobacterium-mediated transformation system for large-scale production of transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) plants for insertional mutagenesis. J. Plant Biol. 47:300–306.CrossRefGoogle Scholar
  14. Lee, M.Y., J.H. Lee, H.I. Ahn, M.J. Kim, N.H. Her, J.K. Choi, C.H. Harn, and K.H. Ryu. 2006. Identification and sequence analysis of RNA3 of a resistance-breaking cucumber mosaic virus isolate on Capsicum annuum. Plant Pathol. J. 23:265–270.Google Scholar
  15. Lee, Y.H., M. Jung, S.H. Shin, J.H. Lee, S.H. Choi, N.H. Her, J.H. Lee, K.H. Ryu, K.Y. Paek, and C.H. Harn. 2009. Transgenic peppers those are highly tolerant to a new CMV pathotype. Plant Cell Rep. 28:223–232.PubMedCrossRefGoogle Scholar
  16. Mittag D., J. Akkerdaas, B.K. Ballmer-Weber, L. Vogel, M. Wensing, W.M. Becker, S.J. Koppelman, A.C. Knulst, A. Helbling, S.L. Hefle, R. Van Ree, and S. Vieths. 2004. Ara h 8, a Bet v 1-homologous allergen from peanut, is a major allergen in patients with combined birch pollen and peanut allergy. J. Allergy Clin. Immunol. 114:1410–1417.PubMedCrossRefGoogle Scholar
  17. Tawfiq, N., R.K. Heaney, J.A. Plumb, G.R. Fenwick, S.R. Musk, and G. Williamson. 1995. Dietary glucosinolates as blocking agents against carcinogenesis-breakdown products assessed by induction of quinone reductase activity in murine hepal 1c1c7 cells. Carcinogenesis 16:1191–1194.PubMedCrossRefGoogle Scholar
  18. Tsai, Y.T., S.H. Chen, K.L. Lin, and H. Hsieh. 1990. Rice pollen allergy in Taiwan. Ann. Allergy 65:459–462.PubMedGoogle Scholar
  19. Xu, H., P. Theerakulpisut, N. Goulding, C. Suphioglu, M.B. Singh, and P.L. Bhalla. 1995. Cloning, expression and immunological characterization of Ory s 1, the major allergen of rice pollen. Gene 164:255–259.PubMedCrossRefGoogle Scholar
  20. Yu, J.G., G.H. Lee, J.S. Kim, E.J. Shim, and Y.D. Park. 2010. An insertion mutagenesis system for analyzing the Chinese cabbage genome using Agrobacterium T-DNA. Mol. Cells 29:267–275.PubMedCrossRefGoogle Scholar
  21. Zhuo, Q., J.H. Pial, Y. Tian, J. Xu, and X.G. Yang. 2009. Large-scale purification and acute toxicity of hygromycin B Phosphotransferase. Biomed. Environm. Sci. 22:22–27.CrossRefGoogle Scholar

Copyright information

© Korean Society for Horticultural Science 2012

Authors and Affiliations

  • Ju Suk Lee
    • 1
  • Ye-Jin Kim
    • 2
  • Ki-Hyun Ryu
    • 3
  • Tae-Ho Han
    • 4
  • Kuen-Woo Park
    • 5
  • Kyu Hwan Chung
    • 6
  • Chan Lee
    • 7
  • Gung-Pyo Lee
    • 6
  • Sun-Hyung Kim
    • 8
  • Jin-Sung Hong
    • 3
  • Young-Doo Park
    • 9
  • Eun-Taeck Woo
    • 10
  • Sung-Chul Park
    • 2
  • Dae-Yeul Son
    • 2
  1. 1.Depratment of Pediatrics, Samsung Changwon Hospital, School of MedicineSungKyunKwan UniversityChangwonKorea
  2. 2.Department of Herbal Food ScienceDaegu Haany UniversityGyeongsanKorea
  3. 3.Department of Horticultural ScienceSeoul Women’s UniversitySeoulKorea
  4. 4.Division of Plant BiotechnologyChonnam National UniversityGwangjuKorea
  5. 5.Division of BiotechnologyKorea UniversitySeoulKorea
  6. 6.Department of Integrative Plant ScienceChung-Ang UniversityAnseongKorea
  7. 7.Department of Food Science and TechnologyChung-Ang UniversityAnseongKorea
  8. 8.Department of Environmental HorticultureUniversity of SeoulSeoulKorea
  9. 9.Department of Horticultural BiotechnologyKyungHee UniversityYonginKorea
  10. 10.Breeding Research InstituteCarrotop Seed Co.AnseongKorea

Personalised recommendations