Horticulture, Environment, and Biotechnology

, Volume 52, Issue 2, pp 163–169 | Cite as

Genetic variations of Chinese melon landraces investigated with EST-SSR markers

  • Qiusheng KongEmail author
  • Changping Xiang
  • Jin Yang
  • Zhongwei Yu
Research Report


SSR markers derived from expressed sequence tags (EST-SSR) are valuable tools for genetic variation assessment because they potentially exhibit functional diversity. The genetic variations of 27 melon accessions, including 21 thin-skinned melon landraces which nearly represent all types of thin-skinned melon landraces originated in China, were analyzed with EST-SSR markers. Of the 22 EST-SSR markers employed, 19 EST-SSR detected polymorphism with 13 of which had putative functions. The number of alleles detected by EST-SSR ranged from 2 to 5 with the average of 3. The PIC value for each locus varied from 0.21 to 0.68 with the mean of 0.46. Cluster analysis by UPGMA partitioned the accessions into groups of thin-skinned melon and thick-skinned melon with high bootstrap value. In the thin-skinned group, the EST-SSR markers failed to discriminate the thin-skinned vegetable melon from the other thin-skinned melon accessions.

Additional key words

cluster analysis functional marker genetic diversity PIC principle coordinate analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Andersen, J.R. and T. Lubberstedt. 2003. Functional markers in plants. Trends Plant Sci. 8:554–560.PubMedCrossRefGoogle Scholar
  2. Anderson, J.A., G.A. Churchill, J.E. Autrique, S.D. Tanksley, and M.E. Sorrells. 1993. Optimizing parental selection for genetic linkage maps. Genome 36:181–186.PubMedCrossRefGoogle Scholar
  3. Chabane, K., G.A. Ablett, G.M. Cordeiro, J. Valkoun, and R.J. Henry. 2005. EST versus genomic derived microsatellite markers for genotyping wild and cultivated barley. Genet. Resour. Crop Evol. 52:903–909.CrossRefGoogle Scholar
  4. Chabane, K., R. Varshney, A. Graner, and J. Valkoun. 2008. Generationand exploitation of EST-derived SSR markers for assaying molecular diversity in durum wheat populations. Genet. Resour. Crop Evol. 55:869–881.CrossRefGoogle Scholar
  5. Chiba, N., K. Suwabe, T. Nunome, and M. Hirai. 2003. Development of microsatellite markers in melon (Cucumis melo L.) and their application to major cucurbit crops. Breeding Sci. 53:21–27.CrossRefGoogle Scholar
  6. Cordeiro, G.M, R. Casu, C.L. McIntyre, J.M. Manners, and R.J. Henry. 2001. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci. 160:1115–1123.PubMedCrossRefGoogle Scholar
  7. Danin-Poleg, Y., N. Reis, G. Tzuri, and N. Katzir. 2001. Development and characterization of microsatellite markers in Cucumis. Theor. Appl. Genet. 102:61–72.CrossRefGoogle Scholar
  8. Fukino, N., Y. Sakata, M. Kunihisa, and S. Matsumoto. 2007. Characterisation of novel simple sequence repeat (SSR) markers for melon (Cucumis melo L.) and their use for genotype identification. J. Hortic. Sci. Biotechnol. 82:330–334.Google Scholar
  9. Gonzalo, M.J., M. Oliver, J. Garcia-Mas, A.J. Monforte, R. Dolcet-Sanjuan, N. Katzir, P. Arus, and A. Monforte. 2005. Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor. Appl. Genet. 110:802–811.PubMedCrossRefGoogle Scholar
  10. Guo, W.Z., C.P. Cai, C.B. Wang, Z.G. Han, X.L. Song, K. Wang, X.W. Niu, C. Wang, K.Y. Lu, B. Shi, and T.Z. Zhang. 2007. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in gossypium. Genetics 176:527–541.PubMedCrossRefGoogle Scholar
  11. Gupta, P.K., S. Rustgi, S. Sharma, R. Singh, N. Kumar, and H.S. Balyan. 2003. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol. Genet. Genomics 270:315–323.PubMedCrossRefGoogle Scholar
  12. Katzir, N., Y. Danin-Poleg, G. Tzuri, Z. Karchi, U. Lavi, and P.B. Cregan. 1996. Length polymorphism and homologies of microsatellites in several Cucurbitaceae species. Theor. Appl. Genet. 93:1282–1290.CrossRefGoogle Scholar
  13. Kong, Q., C. Xiang, Z. Yu, C. Zhang, F. Liu, C. Peng, and X. Peng. 2007. Mining and charactering microsatellites in Cucumis melo expressed sequence tags from sequence database. Mol. Ecol. Notes 7:281–283.CrossRefGoogle Scholar
  14. Laurent, V., P. Devaux, T. Thiel, F. Viard, S. Mielordt, P. Touzet, and M. Quillet. 2007. Comparative effectiveness of sugar beet microsatellie markers isolated from genomic libraries and GenBank ESTs to map the sugar beet genome. Theor. Appl. Genet. 115:793–805.PubMedCrossRefGoogle Scholar
  15. Luan, F., I. Delannay, and J. Staub. 2008. Chinese melon (Cucumis melo L.) diversity analyses provide strategies for germplasm curation, genetic improvement, and evidentiary support of domestication patterns. Euphytica 164:445–461.CrossRefGoogle Scholar
  16. Metzgar, D., J. Bytof, and C. Wills. 2000. Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res. 10:72–80.PubMedGoogle Scholar
  17. Monforte, A.J., J. Garcia-Mas, P. Arus, and E. Minch. 2003. Genetic variability in melon based on microsatellite variation. Plant Breeding 122:153–157.CrossRefGoogle Scholar
  18. Nakata, E., J. Staub, A. Lopez-Sese, and N. Katzir. 2005. Genetic diversity of Japanese melon cultivars (Cucumis melo L.) as assessed by random amplified polymorphic DNA and simple sequence repeat markers. Genet. Resour. Crop Evol. 52:405–419.CrossRefGoogle Scholar
  19. Powell, W., G.C. Machray, and J. Provan. 1996. Polymorphism revealed by simple sequence repeats. Trends Plant Sci. 1:215–222.Google Scholar
  20. Ritschel, P.S., T.C. Lins, R.L. Tristan, G.S. Buso, J.A. Buso, and M.E. Ferreira. 2004. Development of microsatellite markers from an enriched genomic library for genetic analysis of melon (Cucumis melo L.). BMC Plant Biol. 4:9.PubMedCrossRefGoogle Scholar
  21. Robinson, R.W. and D.S. Decker-Walters. 1997. Cucurbits. CAB International, New York, USA.Google Scholar
  22. Sensoy, S., S. Buyukalaca, and K. Abak. 2007. Evaluation of genetic diversity in Turkish melons (Cucumis melo L.) based on phenotypic characters and RAPD markers. Genet. Resour. Crop Evol. 54:1351–1365.CrossRefGoogle Scholar
  23. Staub, J.E., J. Bacher, and K. Poetter. 1996. Factors affecting the application of random amplified polymorphic DNAs in cucumber (Cucumis sativus L.). Hortic. Sci. 31:262–266.Google Scholar
  24. Szabó, Z., G. Gyulai, M. Humphreys, L. Horváth, A. Bittsánszky, R. Lágler, and L. Heszky. 2005. Genetic variation of melon (C. melo) compared to an extinct landrace from the Middle Ages (Hungary) I. rDNA, SSR and SNP analysis of 47 cultivars. Euphytica 146:87–94.CrossRefGoogle Scholar
  25. Varshney, R.K., A. Graner, and M.E. Sorrells. 2005. Genic microsatellite markers in plants: features and applications. Trends in Biotechnol. 23:48–55.CrossRefGoogle Scholar
  26. Yashiro, K., H. Iwata, Y. Akashi, K.O. Tomita, M. Kuzuya, Y. Tsumura, and K. Kato. 2005. Genetic relationship among East and South Asian melon (Cucumis melo L.) revealed by AFLP analysis. Breeding Sci. 55:197–206.CrossRefGoogle Scholar
  27. Yi, G.B., J.M. Lee, S. Lee, D. Choi, and B.D. Kim. 2006. Exploitation of pepper EST-SSRs and an SSR-based linkage map. Theor. Appl. Genet. 114:113–130.PubMedCrossRefGoogle Scholar

Copyright information

© Korean Society for Horticultural Science 2011

Authors and Affiliations

  • Qiusheng Kong
    • 1
    Email author
  • Changping Xiang
    • 1
  • Jin Yang
    • 1
  • Zhongwei Yu
    • 1
  1. 1.National Center for Vegetable Improvement; Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and ForestryHuazhong Agricultural UniversityWuhanChina

Personalised recommendations