Skip to main content

Advertisement

Log in

Human umbilical cord-derived mesenchymal stem cell-exosomal miR-627-5p ameliorates non-alcoholic fatty liver disease by repressing FTO expression

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver disorders. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs)-based therapy is currently considered to be an effective treatment for NAFLD. The present study aimed to determine whether hUC-MSCs-exosomes have a hepatoprotective effect on NAFLD. We constructed NAFLD rat model by high-fat high-fructose feeding. Liver cells (L-O2) were treated with palmitic acid (PA) to mimic NAFLD model. NAFLD rats and PA-treated L-O2 cells were treated with hUC-MSCs-exosomes, and then we determined the influence of exosomes on liver damage and glucose and lipid metabolism in vivo and in vitro. We found that hUC-MSCs-exosomes exhibited an up-regulation of miR-627-5p. Exosomal miR-627-5p promoted cell viability and repressed apoptosis of PA-treated L-O2 cells. Exosomal miR-627-5p also enhanced the expression of G6Pc, PEPCK, FAS and SREBP-1c and suppressed PPARα expression in PA-treated L-O2 cells. Moreover, miR-627-5p interacted with fat mass and obesity-associated gene (FTO) and inhibited FTO expression in L-O2 cells. MiR-627-5p-enriched exosomes improved glucose and lipid metabolism in L-O2 cells by targeting FTO. In vivo, exosomal miR-627-5p ameliorated insulin tolerance, liver damage, glucose and lipid metabolism and reduced lipid deposition in NAFLD rats. Exosomal miR-627-5p also reduced body weight, liver weight, and liver index (body weight/liver weight) in NAFLD rats. In conclusion, these data demonstrate that HUC-MSCs-derived exosomal miR-627-5p improves glucose and lipid metabolism and alleviate liver damage by repressing FTO expression, thereby ameliorating NAFLD progression. Thus, hUC-MSCs-exosomes may be a potential treatment for NAFLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lieber CS. CYP2E1: from ASH to NASH. Hepatol Res. 2004;28(1):1–11. https://doi.org/10.1016/j.hepres.2003.08.001.

    Article  CAS  PubMed  Google Scholar 

  2. Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Manini R, et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology. 2003;37(4):917–23. https://doi.org/10.1053/jhep.2003.50161.

    Article  PubMed  Google Scholar 

  3. de Alwis NM, Day CP. Non-alcoholic fatty liver disease: the mist gradually clears. J Hepatol. 2008;48:S104–12. https://doi.org/10.1016/j.jhep.2008.01.009.

    Article  CAS  PubMed  Google Scholar 

  4. Watt MJ, Miotto PM, De Nardo W, Montgomery MK. The liver as an endocrine organ-linking NAFLD and insulin resistance. Endocr Rev. 2019;40(5):1367–93. https://doi.org/10.1210/er.2019-00034.

    Article  Google Scholar 

  5. Chen L, Chen XW, Huang X, Song BL, Wang Y, Wang Y. Regulation of glucose and lipid metabolism in health and disease. Sci China Life Sci. 2019;62(11):1420–58. https://doi.org/10.1007/s11427-019-1563-3.

    Article  PubMed  Google Scholar 

  6. Hatting M, Tavares CDJ, Sharabi K, Rines AK, Puigserver P. Insulin regulation of gluconeogenesis. Ann N Y Acad Sci. 2018;1411(1):21–35. https://doi.org/10.1111/nyas.13435.

    Article  CAS  PubMed  Google Scholar 

  7. Titchenell PM, Lazar MA, Birnbaum MJ. Unraveling the regulation of hepatic metabolism by insulin. Trends Endocrinol Metab. 2017;28(7):497–505. https://doi.org/10.1016/j.tem.2017.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang Q, Vijayakumar A, Kahn BB. Metabolites as regulators of insulin sensitivity and metabolism. Nat Rev Mol Cell Biol. 2018;19(10):654–72. https://doi.org/10.1038/s41580-018-0044-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li B, Cheng Y, Yu S, Zang L, Yin Y, Liu J, et al. Human umbilical cord-derived mesenchymal stem cell therapy ameliorates nonalcoholic fatty liver disease in obese type 2 diabetic mice. Stem cells international. 2019;2019:8628027. https://doi.org/10.1155/2019/8628027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Phinney DG, Pittenger MF. Concise Review: MSC-derived exosomes for cell-free therapy. Stem cells. 2017;35(4):851–8. https://doi.org/10.1002/stem.2575.

    Article  CAS  PubMed  Google Scholar 

  11. He Q, Wang L, Zhao R, Yan F, Sha S, Cui C, et al. Mesenchymal stem cell-derived exosomes exert ameliorative effects in type 2 diabetes by improving hepatic glucose and lipid metabolism via enhancing autophagy. Stem Cell Res Ther. 2020;11(1):223. https://doi.org/10.1186/s13287-020-01731-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zou XY, Yu Y, Lin S, Zhong L, Sun J, Zhang G, et al. Comprehensive miRNA analysis of human umbilical cord-derived mesenchymal stromal cells and extracellular vesicles. Kidney Blood Press Res. 2018;43(1):152–61. https://doi.org/10.1159/000487369.

    Article  CAS  PubMed  Google Scholar 

  13. Mizuno TM. Fat mass and obesity associated (FTO) gene and hepatic glucose and lipid metabolism. Nutrients. 2018;10(11):1600. https://doi.org/10.3390/nu10111600.

    Article  CAS  PubMed Central  Google Scholar 

  14. Hu Y, Feng Y, Zhang L, Jia Y, Cai D, Qian SB, et al. GR-mediated FTO transactivation induces lipid accumulation in hepatocytes via demethylation of mA on lipogenic mRNAs. RNA Biol. 2020;17(7):930–42. https://doi.org/10.1080/15476286.2020.1736868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu J, Chen Y, Huang Y, Su Y. Human umbilical cord mesenchymal stem cell-derived exosomes suppress dermal fibroblasts-myofibroblats transition via inhibiting the TGF-β1/Smad 2/3 signaling pathway. Exp Mol Pathol. 2020;115: 104468. https://doi.org/10.1016/j.yexmp.2020.104468.

    Article  CAS  PubMed  Google Scholar 

  16. Yin Y, Hao H, Cheng Y, Zang L, Liu J, Gao J, et al. Human umbilical cord-derived mesenchymal stem cells direct macrophage polarization to alleviate pancreatic islets dysfunction in type 2 diabetic mice. Cell Death Dis. 2018;9(7):760. https://doi.org/10.1038/s41419-018-0801-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mizuno TM. FTOFat mass and obesity associated () gene and hepatic glucose and lipid metabolism. Nutrients. 2018;10(11):1600. https://doi.org/10.3390/nu10111600.

    Article  CAS  PubMed Central  Google Scholar 

  18. Shen M, Shen Y, Fan X, Men R, Ye T, Yang L. Roles of macrophages and exosomes in liver diseases. Front Med. 2020;7: 583691. https://doi.org/10.3389/fmed.2020.583691.

    Article  Google Scholar 

  19. Liu XL, Pan Q, Cao HX, Xin FZ, Zhao ZH, Yang RX, et al. Lipotoxic hepatocyte-derived exosomal microRNA 192–5p activates macrophages through Rictor/Akt/Forkhead box Transcription Factor O1 Signaling in Nonalcoholic Fatty Liver Disease. Hepatology. 2020;72(2):454–69. https://doi.org/10.1002/hep.31050.

    Article  CAS  PubMed  Google Scholar 

  20. Li Y, Luan Y, Li J, Song H, Li Y, Qi H, et al. Exosomal miR-199a-5p promotes hepatic lipid accumulation by modulating MST1 expression and fatty acid metabolism. Hepatol Int. 2020;14:1–18. https://doi.org/10.1007/s12072-020-10096-0.

    Article  CAS  Google Scholar 

  21. Sun F, Wu K, Yao Z, Mu X, Zheng Z, Sun M, et al. Long Noncoding RNA PVT1 promotes prostate cancer metastasis by increasing NOP2 expression via targeting tumor suppressor microRNAs. Onco Targets Ther. 2020;13:6755–65. https://doi.org/10.2147/ott.s242441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen F, Liu M, Yu Y, Sun Y, Li J, Hu W, et al. LINC00958 regulated miR-627-5p/YBX2 axis to facilitate cell proliferation and migration in oral squamous cell carcinoma. Cancer Biol Ther. 2019;20(9):1270–80. https://doi.org/10.1080/15384047.2019.1617571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang J, Chen T, Wang L, Yao B, Sun L, Chen S, et al. MicroRNA-627-5p inhibits the proliferation of hepatocellular carcinoma cells by targeting BCL3 transcription coactivator. Clin Exp Pharmacol Physiol. 2020;47(3):485–94. https://doi.org/10.1111/1440-1681.13218.

    Article  CAS  PubMed  Google Scholar 

  24. Chen X, Gao Y, Yang X, Zhang H, Mo Z, Tan A. FTORelationship of gene variations with NAFLD risk in Chinese men. Open Life Sci. 2020;15(1):860–7. https://doi.org/10.1515/biol-2020-0081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang J, Li S, Li J, Han C, Wang Z, Li C, et al. Expression and significance of fat mass and obesity associated gene and forkhead transcription factor O1 in non-alcoholic fatty liver disease. Chin Med J. 2014;127(21):3771–6.

    PubMed  Google Scholar 

  26. Chen A, Chen X, Cheng S, Shu L, Yan M, Yao L, et al. FTO promotes SREBP1c maturation and enhances CIDEC transcription during lipid accumulation in HepG2 cells. Biochim Biophys Acta. 2018;1863(5):538–48. https://doi.org/10.1016/j.bbalip.2018.02.003.

    Article  CAS  Google Scholar 

  27. Chen J, Zhou X, Wu W, Wang X, Wang Y. FTO-dependent function of N6-methyladenosine is involved in the hepatoprotective effects of betaine on adolescent mice. J Physiol Biochem. 2015;71(3):405–13. https://doi.org/10.1007/s13105-015-0420-1.

    Article  CAS  PubMed  Google Scholar 

  28. Stachowska E, Portincasa P, Jamioł-Milc D, Maciejewska-Markiewicz D, Skonieczna-Żydecka K. The Relationship between prebiotic supplementation and anthropometric and biochemical parameters in patients with NAFLD—a systematic review and meta-analysis of randomized controlled trials. Nutrients. 2020;12(11):3460. https://doi.org/10.3390/nu12113460.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China, Synthetic Biology Research (No. 2019YFA0904500); the National Natural Science Foundation of China (No. 81860151); the Key R&D Program of Jiangxi Province (No. 20192BBG70027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunfeng Shen or Xiaoyang Lai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All protocols were authorized by the Ethics Committee of Second Affiliated Hospital of Nanchang University (No. NCDXSYDWFL-201067).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13577_2021_593_MOESM1_ESM.tif

Supplementary Fig. 1 The body weight, liver weight, liver index and lipid deposition of NAFLD rats. Exosomes were isolated form hUC-MSCs following transfection of miR-627-5p inhibitor or inhibitor NC (miR-627-5pI-Exo, NCI-Exo). NAFLD rat model was constructed by HFHF feeding, followed by the exosome treatment. The body weight (A), liver weight (B) and liver index (C) of rats were measured. (D) The quantitative data of Oil Red O staining was presented. ***P < 0.001 vs. Normal; ##P < 0.01, ###P < 0.001 vs. Model; $P < 0.05, $$P < 0.01, $$$P < 0.001 vs. NCI-Exo (TIF 204 KB)

13577_2021_593_MOESM2_ESM.tif

Supplementary Fig. 2 The insulin levels of NAFLD rats. Exosomes were isolated form hUC-MSCs following transfection of miR-627-5p inhibitor or inhibitor NC (miR-627-5pI-Exo, NCI-Exo). NAFLD rat model was constructed by HFHF feeding, followed by the exosome treatment. The insulin levels of rats were detected by ELISA. ***P < 0.001 vs. Normal; ##P < 0.01 vs. Model; $P < 0.05 vs. NCI-Exo (TIF 118 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., Yu, P., Li, F. et al. Human umbilical cord-derived mesenchymal stem cell-exosomal miR-627-5p ameliorates non-alcoholic fatty liver disease by repressing FTO expression. Human Cell 34, 1697–1708 (2021). https://doi.org/10.1007/s13577-021-00593-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00593-1

Keywords

Navigation