Advertisement

Human Cell

pp 1–10 | Cite as

Sphk1 promotes ulcerative colitis via activating JAK2/STAT3 signaling pathway

  • Jiawen Liu
  • Bo JiangEmail author
Research Article
  • 32 Downloads

Abstract

Ulcerative colitis (UC) is a chronic non-specific inflammatory disease of the colon and rectum. The cause of ulcerative colitis is still unclear, although there may be a hereditary factor. SphK1 has been reported to exhibit an inhibitory effect on the occurrence and development of inflammation; however, the association between SphK1 and the progression of UC remains unclear. The aim of the present study was to investigate the effect of Sphk1 on the progression of UC. The proliferation of RAW264.7 cells was determined using a Cell Counting Kit-8 assay and apoptosis was measured using flow cytometry. The levels of pro-inflammatory cytokines secreted by RAW264.7 cells were investigated using ELISA kits and the protein expression levels in RAW264.7 cells were examined by western blotting. A dextran sulfate sodium (DSS)-induced mouse model was established to investigate the effect of SphK1 on the progression of UC in vivo. Overexpression of Sphk1 significantly increased the proliferation and inhibited the apoptosis of RAW264.7 cells. Additionally, overexpression of Sphk1 increased the secretion of pro-inflammatory cytokines and activated the JAK2/STAT3 signaling pathway in RAW264.7 cells, and JSI-124 partially suppressed these effects. Furthermore, SphK1-small interfering RNA or JSI-124 partially rescued lipopolysaccharide-induced proliferation and pro-inflammatory effects on RAW264.7 cells. The SphK1 inhibitor (PF-543) had an inhibitory effect on DSS-induced UC mice. Sphk1 had significant pro-inflammatory effects on the progression of UC, and may thus be a potential novel therapeutic target for the treatment of UC.

Keywords

Ulcerative colitis Sphk1 JAK2/STAT3 NF-κB 

Notes

Acknowledgements

This research was supported by the Youth Fund of Beijing TsingHua Changgung Hospital (12016C1007).

Compliance with ethical standards

Conflict of interest

The authors declare no competing interests.

Ethical approval

All experimental procedures were approved by the Ethical Committee of Beijing TsingHua Changgung Hospital, and the National Institutes of Health guide for the care and use of laboratory animals was followed.

References

  1. 1.
    Cosnes J, Gower-Rousseau C, Seksik P, Cortot A. Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology. 2011;140:1785–94.CrossRefGoogle Scholar
  2. 2.
    Aksoy EK, Cetinkaya H, Savas B, Ensari A, Torgutalp M, Efe C. Vascular endothelial growth factor, endostatin levels and clinical features among patients with ulcerative colitis and irritable bowel syndrome and among healthy controls: a cross-sectional analytical study. Sao Paulo Med J. 2018;136:543–50.CrossRefGoogle Scholar
  3. 3.
    Bandeo L, Rausch A, Saucedo M, et al. Convexity subarachnoid hemorrhage secondary to adalimumab in a patient with ulcerative colitis. J Vasc Interv Neurol. 2018;10:62–4.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Jensen C, Nielsen SH, Mortensen JH, et al. Serum type XVI collagen is associated with colorectal cancer and ulcerative colitis indicating a pathological role in gastrointestinal disorders. Cancer Med. 2018;7:4619–26.CrossRefGoogle Scholar
  5. 5.
    Deng S, Wang H, Fan H, et al. Over-expressed miRNA-200b ameliorates ulcerative colitis-related colorectal cancer in mice through orchestrating epithelial-mesenchymal transition and inflammatory responses by channel of AKT2. Int Immunopharmacol. 2018;61:346–54.CrossRefGoogle Scholar
  6. 6.
    Sun PL, Zhang S. Correlations of 25-hydroxyvitamin D3 level in patients with ulcerative colitis with inflammation level, immunity and disease activity. Eur Rev Med Pharmacol Sci. 2018;22:5635–9.PubMedGoogle Scholar
  7. 7.
    Hood MM, Wilson R, Gorenz A, et al. Sleep quality in ulcerative colitis: associations with inflammation, psychological distress, and quality of life. Int J Behav Med. 2018;25:517–25.CrossRefGoogle Scholar
  8. 8.
    Wedrychowicz A, Tomasik P, Zajac A, Fyderek K. Prognostic value of assessment of stool and serum IL-1beta, IL-1ra and IL-6 concentrations in children with active and inactive ulcerative colitis. Arch Med Sci. 2018;14:107–14.CrossRefGoogle Scholar
  9. 9.
    Chen YY, Ma ZB, Xu HY, et al. IL-6/STAT3/SOCS3 signaling pathway playing a regulatory role in ulcerative colitis carcinogenesis. Int J Clin Exp Med. 2015;8:12009–17.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Li L, Xu T, Huang C, Peng Y, Li J. NLRC5 mediates cytokine secretion in RAW264.7 macrophages and modulated by the JAK2/STAT3 pathway. Inflammation. 2014;37:835–47.CrossRefGoogle Scholar
  11. 11.
    Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998;16:225–60.CrossRefGoogle Scholar
  12. 12.
    Carvalho BC, Oliveira LC, Rocha CD, et al. Both knock-down and overexpression of Rap2a small GTPase in macrophages result in impairment of NF-kappaB activity and inflammatory gene expression. Mol Immunol. 2019;109:27–37.CrossRefGoogle Scholar
  13. 13.
    Abdin AA. Targeting sphingosine kinase 1 (SphK1) and apoptosis by colon-specific delivery formula of resveratrol in treatment of experimental ulcerative colitis in rats. Eur J Pharmacol. 2013;718:145–53.CrossRefGoogle Scholar
  14. 14.
    Escudero-Casao M, Cardona A, Beltran-Debon R, Diaz Y, Matheu MI, Castillon S. Fluorinated triazole-containing sphingosine analogues. Syntheses and in vitro evaluation as SPHK inhibitors. Org Biomol Chem. 2018;16:7230–5.CrossRefGoogle Scholar
  15. 15.
    Yang G, Gu M, Chen W, et al. SPHK-2 promotes the particle-induced inflammation of RAW264.7 by maintaining consistent expression of TNF-alpha and IL-6. Inflammation. 2018;41:1498–507.CrossRefGoogle Scholar
  16. 16.
    Giusto K, Ashby CR. Investigating the Et-1/SphK/S1P pathway as a novel approach for the prevention of inflammation-induced preterm birth. Curr Pharm Des. 2018;24:983–8.CrossRefGoogle Scholar
  17. 17.
    Jurisic V, Srdic-Rajic T, Konjevic G, Bogdanovic G, Colic M. TNF-alpha induced apoptosis is accompanied with rapid CD30 and slower CD45 shedding from K-562 cells. J Membr Biol. 2011;239:115–22.CrossRefGoogle Scholar
  18. 18.
    Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest. 1993;69:238–49.PubMedGoogle Scholar
  19. 19.
    Aoki M, Aoki H, Mukhopadhyay P, et al. Sphingosine-1-phosphate facilitates skin wound healing by increasing angiogenesis and inflammatory cell recruitment with less scar formation. Int J Mol Sci. 2019;20:E3381.CrossRefGoogle Scholar
  20. 20.
    Sangaraju R, Nalban N, Alavala S, Rajendran V, Jerald MK, Sistla R. Protective effect of galangin against dextran sulfate sodium (DSS)-induced ulcerative colitis in Balb/c mice. Inflamm Res. 2019;68:691–704.CrossRefGoogle Scholar
  21. 21.
    Dimitrov V, White JH. Vitamin D signaling in intestinal innate immunity and homeostasis. Mol Cell Endocrinol. 2017;453:68–78.CrossRefGoogle Scholar
  22. 22.
    Abdo J, Rai V, Agrawal DK. Interplay of immunity and vitamin D: interactions and implications with current IBD therapy. Curr Med Chem. 2017;24:852–67.CrossRefGoogle Scholar
  23. 23.
    Rahar B, Chawla S, Tulswani R, Saxena S. Acute hypobaric hypoxia-mediated biochemical/metabolic shuffling and differential modulation of S1PR-SphK in cardiac and skeletal muscles. High Alt Med Biol. 2019;20:78–88.CrossRefGoogle Scholar
  24. 24.
    Zhao C, Wang Y, Yuan X, et al. Berberine inhibits lipopolysaccharide-induced expression of inflammatory cytokines by suppressing TLR4-mediated NF-kB and MAPK signaling pathways in rumen epithelial cells of Holstein calves. J Dairy Res. 2019;86:171–6.CrossRefGoogle Scholar
  25. 25.
    Hulina A, Grdic Rajkovic M, Jaksic Despot D, et al. Extracellular Hsp70 induces inflammation and modulates LPS/LTA-stimulated inflammatory response in THP-1 cells. Cell Stress Chaperones. 2018;23:373–84.CrossRefGoogle Scholar
  26. 26.
    Hardaker EL, Bacon AM, Carlson K, et al. Regulation of TNF-alpha- and IFN-gamma-induced CXCL10 expression: participation of the airway smooth muscle in the pulmonary inflammatory response in chronic obstructive pulmonary disease. FASEB J. 2004;18:191–3.CrossRefGoogle Scholar
  27. 27.
    Hu P, Jiang GM, Wu Y, et al. TNF-alpha is superior to conventional inflammatory mediators in forecasting IVIG nonresponse and coronary arteritis in Chinese children with Kawasaki disease. Clin Chim Acta. 2017;471:76–80.CrossRefGoogle Scholar
  28. 28.
    Ceccarelli S, Panera N, Mina M, et al. LPS-induced TNF-alpha factor mediates pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty liver disease. Oncotarget. 2015;6:41434–52.CrossRefGoogle Scholar
  29. 29.
    Jurisic V, Terzic T, Colic S, Jurisic M. The concentration of TNF-alpha correlate with number of inflammatory cells and degree of vascularization in radicular cysts. Oral Dis. 2008;14:600–5.CrossRefGoogle Scholar
  30. 30.
    Hu H, Wang S, Shi D, et al. Lycorine exerts antitumor activity against osteosarcoma cells in vitro and in vivo xenograft model through the JAK2/STAT3 pathway. Onco Targets Ther. 2019;12:5377–88.CrossRefGoogle Scholar
  31. 31.
    Fu Y, Xu Y, Chen S, Ouyang Y, Sun G. MiR151a-3p promotes postmenopausal osteoporosis by targeting SOCS5 and activating JAK2/STAT3 signaling. Rejuvenation Res. 2019.  https://doi.org/10.1089/rej.2019.2239.CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang X, Xu F, Liu L, et al. (+)-Borneol improves the efficacy of edaravone against DSS-induced colitis by promoting M2 macrophages polarization via JAK2-STAT3 signaling pathway. Int Immunopharmacol. 2017;53:1–10.CrossRefGoogle Scholar
  33. 33.
    Akanda MR, Nam HH, Tian W, Islam A, Choo BK, Park BY. Regulation of JAK2/STAT3 and NF-kappaB signal transduction pathways; Veronica polita alleviates dextran sulfate sodium-induced murine colitis. Biomed Pharmacother. 2018;100:296–303.CrossRefGoogle Scholar

Copyright information

© Japan Human Cell Society and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of GastroenterologyBeijing TsingHua Changgung HospitalBeijingChina

Personalised recommendations