Advertisement

Human Cell

, Volume 31, Issue 4, pp 300–309 | Cite as

MiR-323a-3p suppressed the glycolysis of osteosarcoma via targeting LDHA

  • Hanwen Chen
  • Shuming Gao
  • Cai Cheng
Research Article

Abstract

Accumulating evidence has demonstrated that there is critical involvement of miRNAs in the initiation and progression of cancers. Here, we showed that miR-323a-3p was significantly down-regulated in osteosarcoma (OS) tissues and cell lines. Overexpression of miR-323a-3p decreased the cell viability, colon formation and induced the apoptosis of OS cells. Using bioinformatics analysis, lactate dehydrogenase A (LDHA) was predicted as one of the down-steam targets of miR-323a-3p. Highly expressed miR-323a-3p significantly decreased both the mRNA and protein levels of LDHA. Inverse correlation between the expression of LDHA and miR-323a-3p was observed in OS tissues. Consistent with the function of LDHA in glycolysis of cancer cells, overexpression of miR-323a-3p attenuated the lactate production of OS cells. These results demonstrated that miR-323a-3p suppressed the growth of OS cells via targeting LDHA and inhibited the glycolysis of OS. This study provides insight into the molecular mechanism of miR-323a-3p in regulating OS.

Keywords

MiR-323a-3p Osteosarcoma LDHA Glycolysis 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interests.

References

  1. 1.
    Durfee RA, Mohammed M, Luu HH. Review of osteosarcoma and current management. Rheumatol Ther. 2016;3(2):221–43.  https://doi.org/10.1007/s40744-016-0046-y.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mahajan A, Vaish R, Desai S, Arya S, Sable N, D’cruz A. Gnathic osteosarcoma: clinical, radiologic, and pathologic review of bone beard tumor. J Glob Oncol. 2017;3(6):823–7.  https://doi.org/10.1200/JGO.2016.006494.CrossRefPubMedGoogle Scholar
  3. 3.
    Taran SJ, Taran R, Malipatil NB. Pediatric osteosarcoma: an updated review. Indian J Med Paediatr Oncol. 2017;38(1):33–43.  https://doi.org/10.4103/0971-5851.203513.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Xie L, Ji T, Guo W. Anti-angiogenesis target therapy for advanced osteosarcoma (Review). Oncol Rep. 2017;38(2):625–36.  https://doi.org/10.3892/or.2017.5735.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lodewijk L, Prins AM, Kist JW, Valk GD, Kranenburg O, Rinkes IH, et al. The value of miRNA in diagnosing thyroid cancer: a systematic review. Cancer Biomark. 2012;11(6):229–38.  https://doi.org/10.3233/CBM-2012-0273.CrossRefPubMedGoogle Scholar
  6. 6.
    Srivastava K, Srivastava A. Comprehensive review of genetic association studies and meta-analyses on miRNA polymorphisms and cancer risk. PloS One. 2012;7(11):e50966.  https://doi.org/10.1371/journal.pone.0050966.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wang QX, Zhu YQ, Zhang H, Xiao J. Altered MiRNA expression in gastric cancer: a systematic review and meta-analysis. Cell Physiol Biochem. 2015;35(3):933–44.  https://doi.org/10.1159/000369750.CrossRefPubMedGoogle Scholar
  8. 8.
    Ahmadzada T, Reid G, McKenzie DR. Fundamentals of siRNA and miRNA therapeutics and a review of targeted nanoparticle delivery systems in breast cancer. Biophys Rev. 2018;10(1):69–86.  https://doi.org/10.1007/s12551-017-0392-1.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dufresne S, Rebillard A, Muti P, Friedenreich CM, Brenner DR. A review of physical activity and circulating miRNA expression: implications in cancer risk and progression. Cancer Epidemiol Biomark Prev. 2018;27(1):11–24.  https://doi.org/10.1158/1055-9965.EPI-16-0969.CrossRefGoogle Scholar
  10. 10.
    Wang T, Xu H, Qi M, Yan S, Tian X. miRNA dysregulation and the risk of metastasis and invasion in papillary thyroid cancer: a systematic review and meta-analysis. Oncotarget. 2018;9(4):5473–9.  https://doi.org/10.18632/oncotarget.16681.CrossRefPubMedGoogle Scholar
  11. 11.
    Orellana EA, Kasinski AL. MicroRNAs in cancer: a historical perspective on the path from discovery to therapy. Cancers. 2015;7(3):1388–405.  https://doi.org/10.3390/cancers7030842.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanisms of miRNA regulation. Genom Proteom Bioinform. 2009;7(4):147–54.  https://doi.org/10.1016/S1672-0229(08)60044-3.CrossRefGoogle Scholar
  13. 13.
    Gambari R, Brognara E, Spandidos DA, Fabbri E. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: Nuew trends in the development of miRNA therapeutic strategies in oncology (Review). Int J Oncol. 2016;49(1):5–32.  https://doi.org/10.3892/ijo.2016.3503.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cheng D, Qiu X, Zhuang M, Zhu C, Zou H, Liu Z. MicroRNAs with prognostic significance in osteosarcoma: a systemic review and meta-analysis. Oncotarget. 2017;8(46):81062–74.  https://doi.org/10.18632/oncotarget.19009.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Yuan G, Zhao Y, Wu D, Gao C, Jiao Z. miRNA-20a upregulates TAK1 and increases proliferation in osteosarcoma cells. Future Oncol. 2018.  https://doi.org/10.2217/fon-2017-0490.PubMedCrossRefGoogle Scholar
  16. 16.
    Dong J, Liu Y, Liao W, Liu R, Shi P, Wang L. miRNA-223 is a potential diagnostic and prognostic marker for osteosarcoma. J Bone Oncol. 2016;5(2):74–9.  https://doi.org/10.1016/j.jbo.2016.05.001.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tian X, Zhang J, Yan L, Dong JM, Guo Q. MiRNA-15a inhibits proliferation, migration and invasion by targeting TNFAIP1 in human osteosarcoma cells. Int J Clin Exp Pathol. 2015;8(6):6442–9.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Burns JS, Manda G. Metabolic pathways of the warburg effect in health and disease: perspectives of choice, chain or chance. Int J Mol Sci. 2017;18(12).  https://doi.org/10.3390/ijms18122755.
  19. 19.
    Epstein T, Gatenby RA, Brown JS. The Warburg effect as an adaptation of cancer cells to rapid fluctuations in energy demand. PloS One. 2017;12(9):e0185085.  https://doi.org/10.1371/journal.pone.0185085.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Poff A, Koutnik AP, Egan KM, Sahebjam S, D’Agostino D, Kumar NB. Targeting the Warburg effect for cancer treatment: ketogenic diets for management of glioma. Semin Cancer Biol. 2017.  https://doi.org/10.1016/j.semcancer.2017.12.011.PubMedCrossRefGoogle Scholar
  21. 21.
    Tekade RK, Sun X. The Warburg effect and glucose-derived cancer theranostics. Drug Discov Today. 2017;22(11):1637–53.  https://doi.org/10.1016/j.drudis.2017.08.003.CrossRefPubMedGoogle Scholar
  22. 22.
    Tidwell TR, Soreide K, Hagland HR. Aging, metabolism, and cancer development: from Peto’s paradox to the Warburg effect. Aging Dis. 2017;8(5):662–76.  https://doi.org/10.14336/AD.2017.0713.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    He TL, Zhang YJ, Jiang H, Li XH, Zhu H, Zheng KL. The c-Myc-LDHA axis positively regulates aerobic glycolysis and promotes tumor progression in pancreatic cancer. Med Oncol. 2015;32(7):187.  https://doi.org/10.1007/s12032-015-0633-8.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Han RL, Wang FP, Zhang PA, Zhou XY, Li Y. miR-383 inhibits ovarian cancer cell proliferation, invasion and aerobic glycolysis by targeting LDHA. Neoplasma. 2017;64(2):244–52.  https://doi.org/10.4149/neo_2017_211.CrossRefPubMedGoogle Scholar
  25. 25.
    Wang H, Zhou R, Sun L, Xia J, Yang X, Pan C, et al. TOP1MT deficiency promotes GC invasion and migration via the enhancements of LDHA expression and aerobic glycolysis. Endocr Relat Cancer. 2017;24(11):565–78.  https://doi.org/10.1530/ERC-17-0058.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hua S, Liu C, Liu L, Wu D. miR-142-3p inhibits aerobic glycolysis and cell proliferation in hepatocellular carcinoma via targeting LDHA. Biochem Biophys Res Commun. 2018;496(3):947–54.  https://doi.org/10.1016/j.bbrc.2018.01.112.CrossRefPubMedGoogle Scholar
  27. 27.
    Huang X, Li X, Xie X, Ye F, Chen B, Song C, et al. High expressions of LDHA and AMPK as prognostic biomarkers for breast cancer. Breast. 2016;30:39–46.  https://doi.org/10.1016/j.breast.2016.08.014.CrossRefPubMedGoogle Scholar
  28. 28.
    Ooi AT, Gomperts BN. Molecular pathways: targeting cellular energy metabolism in cancer via inhibition of SLC2A1 and LDHA. Clin Cancer Res. 2015;21(11):2440–4.  https://doi.org/10.1158/1078-0432.CCR-14-1209.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9(6):425–34.  https://doi.org/10.1016/j.ccr.2006.04.023.CrossRefPubMedGoogle Scholar
  30. 30.
    Li L, Kang L, Zhao W, Feng Y, Liu W, Wang T, et al. miR-30a-5p suppresses breast tumor growth and metastasis through inhibition of LDHA-mediated Warburg effect. Cancer Lett. 2017;400:89–98.  https://doi.org/10.1016/j.canlet.2017.04.034.CrossRefPubMedGoogle Scholar
  31. 31.
    Shahar T, Granit A, Zrihan D, Canello T, Charbit H, Einstein O, et al. Expression level of miRNAs on chromosome 14q32.31 region correlates with tumor aggressiveness and survival of glioblastoma patients. J Neuro Oncol. 2016;130(3):413–22.  https://doi.org/10.1007/s11060-016-2248-0.CrossRefGoogle Scholar
  32. 32.
    Li J, Xu X, Meng S, Liang Z, Wang X, Xu M, et al. MET/SMAD3/SNAIL circuit mediated by miR-323a-3p is involved in regulating epithelial-mesenchymal transition progression in bladder cancer. Cell Death Dis. 2017;8(8):e3010.  https://doi.org/10.1038/cddis.2017.331.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cao K, Li J, Chen J, Qian L, Wang A, Chen X, et al. microRNA-33a-5p increases radiosensitivity by inhibiting glycolysis in melanoma. Oncotarget. 2017;8(48):83660–72.  https://doi.org/10.18632/oncotarget.19014.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhao Y, Wu C, Li L. MicroRNA-33b inhibits cell proliferation and glycolysis by targeting hypoxia-inducible factor-1alpha in malignant melanoma. Exp Ther Med. 2017;14(2):1299–306.  https://doi.org/10.3892/etm.2017.4702.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zhao X, Lu C, Chu W, Zhang B, Zhen Q, Wang R, et al. MicroRNA-124 suppresses proliferation and glycolysis in non-small cell lung cancer cells by targeting AKT-GLUT1/HKII. Tumour Biol. 2017;39(5):1010428317706215.  https://doi.org/10.1177/1010428317706215.PubMedCrossRefGoogle Scholar
  36. 36.
    Chen Y, Cao KE, Wang S, Chen J, He B, He GU, et al. MicroRNA-138 suppresses proliferation, invasion and glycolysis in malignant melanoma cells by targeting HIF-1alpha. Exp Ther Med. 2016;11(6):2513–8.  https://doi.org/10.3892/etm.2016.3220.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Li SJ, Liu HL, Tang SL, Li XJ, Wang XY. MicroRNA-150 regulates glycolysis by targeting von Hippel-Lindau in glioma cells. Am J Transl Res. 2017;9(3):1058–66.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Li LQ, Yang Y, Chen H, Zhang L, Pan D, Xie WJ. MicroRNA-181b inhibits glycolysis in gastric cancer cells via targeting hexokinase 2 gene. Cancer Biomark. 2016;17(1):75–81.  https://doi.org/10.3233/CBM-160619.CrossRefPubMedGoogle Scholar
  39. 39.
    Santasusagna S, Moreno I, Navarro A, Munoz C, Martinez F, Hernandez R, et al. miR-328 mediates a metabolic shift in colon cancer cells by targeting SLC2A1/GLUT1. Clin Transl Oncol. 2018.  https://doi.org/10.1007/s12094-018-1836-1.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Zhu W, Huang Y, Pan Q, Xiang P, Xie N, Yu H. MicroRNA-98 suppress Warburg effect by targeting HK2 in colon cancer cells. Dig Dis Sci. 2017;62(3):660–8.  https://doi.org/10.1007/s10620-016-4418-5.CrossRefPubMedGoogle Scholar

Copyright information

© Japan Human Cell Society and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of First OrthopedicsCangzhou Central HospitalCangzhouChina

Personalised recommendations