Skip to main content
Log in

Acetylshikonin from Zicao ameliorates renal dysfunction and fibrosis in diabetic mice by inhibiting TGF-β1/Smad pathway

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Diabetic nephropathy (DN) is the major cause of end-stage renal disease in diabetic patients. Zicao, a well-known Chinese traditional medicine, has attracted much attention due to its beneficial effects in various medical fields. In this study, we attempted to investigate the effects and mechanisms of action of acetylshikonin, the main ingredient of Zicao, on renal dysfunction in DN. Our results showed that administration with acetylshikonin not only decreased blood urea nitrogen, urine creatinine and the mean kidney-to-body weight ratio in streptozotocin-induced diabetic mice, but also restored the loss of body weight, whereas the blood glucose was not changed. Masson’s trichrome staining showed that acetylshikonin treatment resulted in a marked decrease in kidney fibrosis from diabetic mice. The increased expression of fibrosis proteins, such as plasminogen activator inhibitor type 1 (PAI-1), connective tissue growth factor, and collagen III and IV, were reduced after acetylshikonin administration. In addition, the expressions of interleukin-1β, interleukin-6, monocyte chemoattractant protein-1, intercellular adhesion molecule 1 and infiltration of macrophages in kidney tissues were decreased in acetylshikonin-treated diabetic mice. Acetylshikonin led to a reduction of transforming growth factor-β1 (TGF-β1) expression and Smad-2/3 phosphorylation, as accompanied by increased Smad7 expression. Furthermore, in vitro treatment with acetylshikonin markedly attenuated TGF-β1-induced the PAI-1, collagen III and IV, and Smad-2/3 phosphorylation in HK2 immortalized human proximal tubule epithelial cells. Acetylshikonin also prevented epithelial-to-mesenchymal transition induced by TGF-β1. Collectively, our study provides evidences that acetylshikonin attenuates renal fibrosis though inhibiting TGF-β1/Smad signaling pathway, suggesting that acetylshikonin may be a novel therapeutic agent for the treatment of DN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mochizuki Y, Tanaka H, Matsumoto K, Sano H, Shimoura H, Ooka J, Sawa T, Ryo-Koriyama K, Hirota Y, Ogawa W, Hirata K. Impaired mechanics of left ventriculo-atrial coupling in patients with diabetic nephropathy. Circ J. 2016;80(9):1957–64. https://doi.org/10.1253/circj.CJ-16-0488.

    Article  PubMed  Google Scholar 

  2. Ritz E, Rychlik I, Locatelli F, Halimi S. End-stage renal failure in type 2 diabetes: a medical catastrophe of worldwide dimensions. Am J Kidney Dis. 1999;34(5):795–808. https://doi.org/10.1016/S0272-6386(99)70035-1.

    Article  PubMed  CAS  Google Scholar 

  3. Ni WJ, Tang LQ, Zhou H, Ding HH, Qiu YY. Renoprotective effect of berberine via regulating the PGE2-EP1-Galphaq-Ca(2+) signalling pathway in glomerular mesangial cells of diabetic rats. J Cell Mol Med. 2016;20(8):1491–502. https://doi.org/10.1111/jcmm.12837.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Deckert T, Poulsen JE, Larsen M. Prognosis of diabetics with diabetes onset before the age of thirty-one. I. Survival, causes of death, and complications. Diabetologia. 1978;14(6):363–70.

    Article  PubMed  CAS  Google Scholar 

  5. Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol. 2004;15(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  6. Wang Z, Han Z, Tao J, Wang J, Liu X, Zhou W, Xu Z, Zhao C, Wang Z, Tan R, Gu M. Role of endothelial-to-mesenchymal transition induced by TGF-beta1 in transplant kidney interstitial fibrosis. J Cell Mol Med. 2017;. https://doi.org/10.1111/jcmm.13157.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Matsushita Y, Ogawa D, Wada J, Yamamoto N, Shikata K, Sato C, Tachibana H, Toyota N, Makino H. Activation of peroxisome proliferator-activated receptor delta inhibits streptozotocin-induced diabetic nephropathy through anti-inflammatory mechanisms in mice. Diabetes. 2011;60(3):960–8. https://doi.org/10.2337/db10-1361.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Navarro-Gonzalez JF, Mora-Fernandez C. The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol. 2008;19(3):433–42. https://doi.org/10.1681/ASN.2007091048.

    Article  PubMed  CAS  Google Scholar 

  9. Sanz AB, Sanchez-Nino MD, Ramos AM, Moreno JA, Santamaria B, Ruiz-Ortega M, Egido J, Ortiz A. NF-kappaB in renal inflammation. J Am Soc Nephrol. 2010;21(8):1254–62. https://doi.org/10.1681/ASN.2010020218.

    Article  PubMed  CAS  Google Scholar 

  10. Kawai T, Rakugi H. Which indexes are the most important risk factor for cardiorenal events in type 2 diabetic patients? Circ J. 2013;77(11):2700–1.

    Article  PubMed  Google Scholar 

  11. Rosolowsky ET, Skupien J, Smiles AM, Niewczas M, Roshan B, Stanton R, Eckfeldt JH, Warram JH, Krolewski AS. Risk for ESRD in type 1 diabetes remains high despite renoprotection. J Am Soc Nephrol. 2011;22(3):545–53. https://doi.org/10.1681/ASN.2010040354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Guo C, Liu Y, Zhao W, Wei S, Zhang X, Wang W, Zeng X. Apelin promotes diabetic nephropathy by inducing podocyte dysfunction via inhibiting proteasome activities. J Cell Mol Med. 2015;19(9):2273–85. https://doi.org/10.1111/jcmm.12619.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Chennasamudram SP, Kudugunti S, Boreddy PR, Moridani MY, Vasylyeva TL. Renoprotective effects of (+)-catechin in streptozotocin-induced diabetic rat model. Nutr Res. 2012;32(5):347–56. https://doi.org/10.1016/j.nutres.2012.03.015.

    Article  PubMed  CAS  Google Scholar 

  14. Yang QH, Liang Y, Xu Q, Zhang Y, Xiao L, Si LY. Protective effect of tetramethylpyrazine isolated from Ligusticum chuanxiong on nephropathy in rats with streptozotocin-induced diabetes. Phytomedicine. 2011;18(13):1148–52. https://doi.org/10.1016/j.phymed.2011.05.003.

    Article  PubMed  CAS  Google Scholar 

  15. Su ML, He Y, Li QS, Zhu BH. Efficacy of Acetylshikonin in preventing obesity and hepatic steatosis in db/db mice. Molecules. 2016;. https://doi.org/10.3390/molecules21080976.

    Article  PubMed  Google Scholar 

  16. Zorman J, Susjan P, Hafner-Bratkovic I. Shikonin suppresses NLRP3 and AIM2 inflammasomes by direct inhibition of caspase-1. PLoS One. 2016;11(7):e0159826. https://doi.org/10.1371/journal.pone.0159826.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Andujar I, Rios JL, Giner RM, Recio MC. Pharmacological properties of shikonin—a review of literature since 2002. Planta Med. 2013;79(18):1685–97. https://doi.org/10.1055/s-0033-1350934.

    Article  PubMed  CAS  Google Scholar 

  18. Zeng Z, Zhu BH. Arnebin-1 promotes the angiogenesis of human umbilical vein endothelial cells and accelerates the wound healing process in diabetic rats. J Ethnopharmacol. 2014;154(3):653–62. https://doi.org/10.1016/j.jep.2014.04.038.

    Article  PubMed  CAS  Google Scholar 

  19. Cheng YW, Chang CY, Lin KL, Hu CM, Lin CH, Kang JJ. Shikonin derivatives inhibited LPS-induced NOS in RAW 264.7 cells via downregulation of MAPK/NF-kappaB signaling. J Ethnopharmacol. 2008;120(2):264–71. https://doi.org/10.1016/j.jep.2008.09.002.

    Article  PubMed  CAS  Google Scholar 

  20. Su M, Huang W, Zhu B. Acetylshikonin from zicao prevents obesity in rats on a high-fat diet by inhibiting lipid accumulation and inducing lipolysis. PLoS One. 2016;11(1):e0146884. https://doi.org/10.1371/journal.pone.0146884.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Pan Y, Huang Y, Wang Z, Fang Q, Sun Y, Tong C, Peng K, Wang Y, Miao L, Cai L, Zhao Y, Liang G. Inhibition of MAPK-mediated ACE expression by compound C66 prevents STZ-induced diabetic nephropathy. J Cell Mol Med. 2014;18(2):231–41. https://doi.org/10.1111/jcmm.12175.

    Article  PubMed  CAS  Google Scholar 

  22. Ozcan F, Ozmen A, Akkaya B, Aliciguzel Y, Aslan M. Beneficial effect of myricetin on renal functions in streptozotocin-induced diabetes. Clin Exp Med. 2012;12(4):265–72. https://doi.org/10.1007/s10238-011-0167-0.

    Article  PubMed  CAS  Google Scholar 

  23. Pohlers D, Brenmoehl J, Loffler I, Muller CK, Leipner C, Schultze-Mosgau S, Stallmach A, Kinne RW, Wolf G. TGF-beta and fibrosis in different organs—molecular pathway imprints. Biochem Biophys Acta. 2009;1792(8):746–56. https://doi.org/10.1016/j.bbadis.2009.06.004.

    Article  PubMed  CAS  Google Scholar 

  24. Chen HY, Huang XR, Wang W, Li JH, Heuchel RL, Chung AC, Lan HY. The protective role of Smad7 in diabetic kidney disease: mechanism and therapeutic potential. Diabetes. 2011;60(2):590–601. https://doi.org/10.2337/db10-0403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Tian W, Lei H, Guan R, Xu Y, Li H, Wang L, Yang B, Gao Z, Xin Z. Icariside II ameliorates diabetic nephropathy in streptozotocin-induced diabetic rats. Drug Des Dev Ther. 2015;9:5147–57. https://doi.org/10.2147/DDDT.S90060.

    Article  CAS  Google Scholar 

  26. He Y, Li Q, Su M, Huang W, Zhu B. Acetylshikonin from Zicao exerts antifertility effects at high dose in rats by suppressing the secretion of GTH. Biochem Biophys Res Commun. 2016;476(4):560–5. https://doi.org/10.1016/j.bbrc.2016.05.162.

    Article  PubMed  CAS  Google Scholar 

  27. Kim DJ, Lee JH, Park HR, Choi YW. Acetylshikonin inhibits growth of oral squamous cell carcinoma by inducing apoptosis. Arch Oral Biol. 2016;70:149–57. https://doi.org/10.1016/j.archoralbio.2016.06.020.

    Article  PubMed  CAS  Google Scholar 

  28. Vaughan DE, Rai R, Khan SS, Eren M, Ghosh AK. Plasminogen activator inhibitor-1 is a marker and a mediator of senescence. Arterioscler Thromb Vasc Biol. 2017;. https://doi.org/10.1161/ATVBAHA.117.309451.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Weston BS, Wahab NA, Mason RM. CTGF mediates TGF-beta-induced fibronectin matrix deposition by upregulating active alpha5beta1 integrin in human mesangial cells. J Am Soc Nephrol. 2003;14(3):601–10.

    Article  PubMed  CAS  Google Scholar 

  30. Wolf G. Growth factors and the development of diabetic nephropathy. Curr Diab Rep. 2003;3(6):485–90.

    Article  PubMed  Google Scholar 

  31. Sonnylal S, Shi-Wen X, Leoni P, Naff K, Van Pelt CS, Nakamura H, Leask A, Abraham D, Bou-Gharios G, de Crombrugghe B. Selective expression of connective tissue growth factor in fibroblasts in vivo promotes systemic tissue fibrosis. Arthritis Rheum. 2010;62(5):1523–32. https://doi.org/10.1002/art.27382.

    Article  PubMed  CAS  Google Scholar 

  32. Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol. 2010;21(2):212–22. https://doi.org/10.1681/ASN.2008121226.

    Article  PubMed  CAS  Google Scholar 

  33. Lan HY. Transforming growth factor-beta/Smad signalling in diabetic nephropathy. Clin Exp Pharmacol Physiol. 2012;39(8):731–8. https://doi.org/10.1111/j.1440-1681.2011.05663.x.

    Article  PubMed  CAS  Google Scholar 

  34. Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell. 2000;6(6):1365–75.

    Article  PubMed  CAS  Google Scholar 

  35. Hong SW, Isono M, Chen S, Iglesias-De La Cruz MC, Han DC, Ziyadeh FN. Increased glomerular and tubular expression of transforming growth factor-beta1, its type II receptor, and activation of the Smad signaling pathway in the db/db mouse. Am J Pathol. 2001;158(5):1653–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zezhao Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Hong, Z., Peng, Z. et al. Acetylshikonin from Zicao ameliorates renal dysfunction and fibrosis in diabetic mice by inhibiting TGF-β1/Smad pathway. Human Cell 31, 199–209 (2018). https://doi.org/10.1007/s13577-017-0192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-017-0192-8

Keywords

Navigation