Human Cell

, Volume 30, Issue 2, pp 117–123 | Cite as

Infection of defective human T-lymphotropic virus type 1

  • Yuuki Hashikura
  • Kazumi Umeki
  • Kunihiko Umekita
  • Hajime Nomura
  • Akiteru Yamada
  • Ikuo Yamamoto
  • Hiroo Hasegawa
  • Katsunori Yanagihara
  • Akihiko OkayamaEmail author
Research Article


In a previous study, we reported that an identical defective provirus had integrated into multiple sites of the genome of a representative human T-lymphotropic virus type 1 (HTLV-1) cell line, MT-2. A possible explanation for this may be the repeated infection of this defective provirus to a cell. Therefore, we attempted to determine whether a defective provirus could transmit during the co-culture of HTLV-1 uninfected human T-cell line, Jurkat, with MT-2 cells treated with mitomycin C. As a result, we established not only a cell line with the integration of one complete provirus, but also a cell line with the integration of one defective provirus. The rearrangement of the T-cell receptor -γ gene of these cell lines showed them to be derived from Jurkat cells. Both HTLV-1 Tax/Rex and HBZ RNA were detected in the cell line, which harbors a complete provirus. On the other hand, HBZ RNA and transcriptional product specific for the defective provirus were detected in the cell line, which harbors a defective HTLV-1 provirus only. These results suggested that a defective HTLV-1 provirus with large depletion of internal sequence could transmit to other cells. Moreover, the defective provirus can be transcriptionally active. This suggested the possibility that the defective HTLV-1 provirus found in the lymphocytes of HTLV-1 carriers and patients with adult T-cell leukemia may transmit to other T-cells in vivo. The results also suggested that defective provirus in HTLV-1 carriers could be functional and may play a role in leukemogenesis.


HTLV-1 Defective virus MT-2 cell line 



The authors would like to thank Ms. Y. Kaseda and Ms. K. Takatsuka (Miyazaki University) for their technical support and assistance.

Compliance with ethical standards

Conflict of interest

We have no disclosure.


  1. 1.
    Hashikura Y, Umeki K, Umekita K, Nomura H, Yamamoto I, Hasegawa H, et al. The diversity of the structure and genomic integration sites of HTLV-1 provirus in MT-2 cell lines. Hum Cell. 2016;29:122–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Igakura T, Stinchcombe JC, Goon PK, Taylor GP, Weber JN, Griffiths GM, Tanaka Y, Osame M, Bangham CR. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science. 2003;299:1713–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Thoulouze MI, Alcover A. Can viruses form biofilms? Trends Microbiol. 2011;19:257–62.CrossRefPubMedGoogle Scholar
  4. 4.
    Van Prooyen N, Gold H, Andresen V, Schwartz O, Jones K, Ruscetti F, et al. Human T-cell leukemia virus type 1 p8 protein increases cellular conduits and virus transmission. Proc Natl Acad Sci USA. 2010;107:20738–43.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Grassmann R, Dengler C, Müller-Fleckenstein I, Fleckenstein B, McGuire K, Dokhelar MC, et al. Transformation to continuous growth of primary human T lymphocytes by human T-cell leukemia virus type I X-region genes transduced by a Herpesvirus saimiri vector. Proc Natl Acad Sci USA. 1989;86:3351–5.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Fisher HW, Puck TT. On the functions of X-irradiated “feeder” cells in supporting growth of single mammalian cells. Proc Natl Acad Sci USA. 1956;42:900–6.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Seiki M, Hattori S, Hirayama Y, Yoshida M. Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA. Proc Natl Acad Sci USA. 1983;80:3618–22.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Umeki K, Umekita K, Hashikura Y, Yamamoto I, Kubo K, Nagatomo Y, Okayama A (2017) Evaluation of line immunoassay to detect HTLV-1 infection in an endemic area, Southwest of Japan; comparison with polymerase chain reaction and Western blot. Clin Lab 63.doi: 10.7754/Clin.Lab.2016.160501
  9. 9.
    Ueno S, Umeki K, Takajo I, Nagatomo Y, Kusumoto N, Umekita K, et al. Proviral loads of human T-lymphotropic virus Type 1 in asymptomatic carriers with different infection routes. Int J Cancer. 2011;130:2318–26.CrossRefPubMedGoogle Scholar
  10. 10.
    Kuramitsu M, Okuma K, Yamagishi M, Yamochi T, Firouzi S, Momose H, et al. Identification of TL-Om1, an adult T-cell leukemia (ATL) cell line, as reference material for quantitative PCR for human T-lymphotropic virus 1. J Clin Microbiol. 2015;53:587–96.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Benhattar J, Delacretaz F, Martin P, Chau-bert P, Costa J. Improved polymerase chain reaction detection of clonal T-cell lymphoid neoplasms. Diagn Mol Pathol. 1995;4:108–12.CrossRefPubMedGoogle Scholar
  12. 12.
    Takenouchi H, Umeki K, Sasaki D, Yamamoto I, Nomura H, Takajo I, et al. Defective human T-lymphotropic virus type 1 provirus in asymptomatic carriers. Int J Cancer. 2011;128:1335–43.CrossRefGoogle Scholar
  13. 13.
    Etoh K, Tamiya S, Yamaguchi K, Okayama A, Tsubouchi H, Ideta T, et al. Persistent clonal proliferation of human T-lymphotropic virus type I-infected cells in vivo. Cancer Res. 1997;57:4862–7.PubMedGoogle Scholar
  14. 14.
    Miyoshi I, Kubonishi I, Yoshimoto S, Shiraishi Y. A T-cell line derived from normal human cord leukocytes by co-culturing with human leukemic T-cells. Gann. 1981;72:978–81.PubMedGoogle Scholar
  15. 15.
    Miyoshi I, Kubonishi I, Yoshimoto S, Shiraishi Y. Type C virus particles in a cord T-cell line derived by co-cultivating normal human cord leukocytes and human leukaemic T cells. Nature. 1981;294:770–1.CrossRefPubMedGoogle Scholar
  16. 16.
    Yamamoto N, Okada M, Koyanagi Y, Kannagi M, Hinuma Y. Transformation of human leukocytes by cocultivation with an adult T cell leukemia virus producer cell line. Science. 1982;217:737–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Miyazaki M, Yasunaga J, Taniguchi Y, Tamiya S, Nakahata T, Matsuoka M. Preferential selection of human T-cell leukemia virus type 1 provirus lacking the 5′ long terminal repeat during oncogenesis. J Virol. 2007;81:5714–23.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tamiya S, Matsuoka M, Etho K, Watanabe T, Kamihira S, Yamaguchi K, et al. Two types of defective human T-lymphotropic virus type I provirus in adult T-cell leukemia. Blood. 1996;88:3065–73.PubMedGoogle Scholar
  19. 19.
    Morozov VA, Weiss RA. Two types of HTLV-1 particles are released from MT-2 cells. Virology. 1999;255:279–84.CrossRefPubMedGoogle Scholar
  20. 20.
    Benovic S, Kok T, Stephenson A, McInnes J, Burrell C, Li P. De novo reverse transcription of HTLV-1 following cell-to-cell transmission of infection. Virology. 1998;244:294–301.CrossRefPubMedGoogle Scholar
  21. 21.
    Iino T, Takeuchi K, Nam SH, Siomi H, Sabe H, Kobayashi N, et al. Structural analysis of p28 adult T-cell leukaemia-associated antigen. J Gen Virol. 1986;67:1373–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Takeda S, Maeda M, Morikawa S, Taniguchi Y, Yasunaga J, Nosaka K, et al. Genetic and epigenetic inactivation of tax gene in adult T-cell leukemia cells. Int J Cancer. 2004;109:559–67.CrossRefPubMedGoogle Scholar
  23. 23.
    Tsukasaki K, Tsushima H, Yamamura M, Hata T, Murata K, Maeda T, et al. Integration patterns of HTLV-I provirus in relation to the clinical course of ATL: frequent clonal change at crisis from indolent disease. Blood. 1997;89:948–56.PubMedGoogle Scholar
  24. 24.
    Kamihira S, Sugahara K, Tsuruda K, Minami S, Uemura A, Akamatsu N, et al. Proviral status of HTLV-1 integrated into the host genomic DNA of adult T-cell leukemia cells. Clin Lab Haematol. 2005;27:235–41.CrossRefPubMedGoogle Scholar
  25. 25.
    Ohshima K, Kikuchi M, Masuda Y, Kobari S, Sumiyoshi Y, Eguchi F, et al. Defective provirus form of human T-cell leukemia virus type I in adult T-cell leukemia/lymphoma: clinicopathological features. Cancer Res. 1991;51:4639–42.PubMedGoogle Scholar
  26. 26.
    Korber B, Okayama A, Donnelly R, Tachibana N, Essex M. Polymerase chain reaction analysis of defective human T-cell leukemia virus type I proviral genomes in leukemic cells of patients with adult T-cell leukemia. J Virol. 1991;65:5471–6.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Satou Y, Yasunaga J, Yoshida M, Matsuoka M. HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc Natl Acad Sci USA. 2006;103:720–5.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bangham CR. Human T-lymphotropic virus type 1 (HTLV-1): persistence and immune control. Int J Hematol. 2003;78:297–303.CrossRefPubMedGoogle Scholar
  29. 29.
    Onafuwa-Nuga A, Telesnitsky A. The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol Mol Biol Rev. 2009;73:451–80.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Japan Human Cell Society and Springer Japan 2017

Authors and Affiliations

  • Yuuki Hashikura
    • 1
  • Kazumi Umeki
    • 1
  • Kunihiko Umekita
    • 1
  • Hajime Nomura
    • 1
  • Akiteru Yamada
    • 1
  • Ikuo Yamamoto
    • 1
  • Hiroo Hasegawa
    • 2
  • Katsunori Yanagihara
    • 2
  • Akihiko Okayama
    • 1
    Email author
  1. 1.Department of Rheumatology, Infectious Diseases and Laboratory Medicine, Faculty of MedicineUniversity of MiyazakiKiyotakeJapan
  2. 2.Department of Laboratory MedicineNagasaki University Graduate School of Biomedical SciencesNagasakiJapan

Personalised recommendations