Human Cell

, Volume 29, Issue 2, pp 58–66 | Cite as

Identification of a highly immunogenic mouse breast cancer sub cell line, 4T1-S

  • Hirotake Abe
  • Haruka Wada
  • Muhammad Baghdadi
  • Sayaka Nakanishi
  • Yuu Usui
  • Takahiro Tsuchikawa
  • Toshiaki Shichinohe
  • Satoshi Hirano
  • Ken-ichiro SeinoEmail author
Rapid Communication


Cancer vaccines serve as a promising clinical immunotherapeutic strategy that help to trigger an effective and specific antitumor immune response compared to conventional therapies. However, poor immunogenicity of tumor cells remains a major obstacle for clinical application, and developing new methods to modify the immunogenicity of tumor cells may help to improve the clinical outcome of cancer vaccines. 4T1 mouse breast cancer cell line has been known as poorly immunogenic and highly metastatic cell line. Using this model, we identified a sub cell line of 4T1—designated as 4T1-Sapporo (4T1-S)—which shows immunogenic properties when used as a vaccine against the same line. In 4T1-S-vaccinated mice, subcutaneous injection of 4T1-S resulted in an antitumor inflammatory response represented by significant enlargement of draining lymph nodes, accompanied with increased frequencies of activated CD8 T cells and a subpopulation of myeloid cells. Additionally, 4T1-S vaccine was ineffective to induce tumor rejection in nude mice, which importantly indicate that 4T1-S vaccine rely on T cell response to induce tumor rejection. Further analysis to identify mechanisms that control tumor immunogenicity in this model may help to develop new methods for improving the efficacies of clinical cancer vaccines.


Breast cancer 4T1 Immunogenicity Transformation 







Draining lymph node


Remote lymph node


Tumor infiltrating lymphocytes



This study was supported in part by research grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan (KS). This work was also supported in part by the Suhara Foundation (KS).

Compliance with ethical standards

Conflict of interest

There is no conflict of interest.


  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Kumiko Saika TS. Epidemiology of breast cancer in Japan and the US. JMAJ. 2009;52:39–44.Google Scholar
  3. 3.
    Burstein HJ, Temin S, Anderson H, Buchholz TA, Davidson NE, Gelmon KE, Giordano SH, Hudis CA, Rowden D, Solky AJ, Stearns V, Winer EP, Griggs JJ. Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: american society of clinical oncology clinical practice guideline focused update. J Clin Oncol. 2014;32:2255–69.CrossRefPubMedGoogle Scholar
  4. 4.
    Azim HA Jr, de Azambuja E, Colozza M, Bines J, Piccart MJ. Long-term toxic effects of adjuvant chemotherapy in breast cancer. Ann Oncol. 2011;22:1939–47.CrossRefPubMedGoogle Scholar
  5. 5.
    Howard-Anderson J, Ganz PA, Bower JE, Stanton AL. Quality of life, fertility concerns, and behavioral health outcomes in younger breast cancer survivors: a systematic review. J Natl Cancer Inst. 2012;104:386–405.CrossRefPubMedGoogle Scholar
  6. 6.
    Kirkwood JM, Butterfield LH, Tarhini AA, Zarour H, Kalinski P, Ferrone S. Immunotherapy of cancer in 2012. CA Cancer J Clin. 2012;62:309–35.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Emens LA. Breast cancer immunobiology driving immunotherapy: vaccines and immune checkpoint blockade. Expert Rev Anticancer Ther. 2012;12:1597–611.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang-Johanning F, Rycaj K, Plummer JB, Li M, Yin B, Frerich K, Garza JG, Shen J, Lin K, Yan P, Glynn SA, Dorsey TH, Hunt KK, Ambs S, Johanning GL. Immunotherapeutic potential of anti-human endogenous retrovirus-K envelope protein antibodies in targeting breast tumors. J Natl Cancer Inst. 2012;104:189–210.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hailemichael Y, Dai Z, Jaffarzad N, Ye Y, Medina MA, Huang XF, Dorta-Estremera SM, Greeley NR, Nitti G, Peng W, Liu C, Lou Y, Wang Z, Ma W, Rabinovich B, Sowell RT, Schluns KS, Davis RE, Hwu P, Overwijk WW. Persistent antigen at vaccination sites induces tumor-specific CD8(+) T cell sequestration, dysfunction and deletion. Nat Med. 2013;19:465–72.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wu X, Peng M, Huang B, Zhang H, Wang H, Huang B, Xue Z, Zhang L, Da Y, Yang D, Yao Z, Zhang R. Immune microenvironment profiles of tumor immune equilibrium and immune escape states of mouse sarcoma. Cancer Lett. 2013;340:124–33.CrossRefPubMedGoogle Scholar
  11. 11.
    Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases–elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Haikerwal SJ, Hagekyriakou J, MacManus M, Martin OA, Haynes NM. Building immunity to cancer with radiation therapy. Cancer Lett. 2015;368:198–208.CrossRefPubMedGoogle Scholar
  13. 13.
    Matthew R, Buckwalter PKS. Mechanism of dichotomy between CD8+ responses elicited by apoptotic and necrotic cells. Cancer Immun. 2013;13:13.Google Scholar
  14. 14.
    Matsumura S, Wang B, Kawashima N, Braunstein S, Badura M, Cameron TO, Babb JS, Schneider RJ, Formenti SC, Dustin ML, Demaria S. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol. 2008;181:3099–107.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sakaguchi N, Takahashi T, Hata H, Nomura T, Tagami T, Yamazaki S, Sakihama T, Matsutani T, Negishi I, Nakatsuru S, Sakaguchi, S. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature. 2003;426:454–60.CrossRefPubMedGoogle Scholar
  16. 16.
    Fairfield H, Srivastava A, Ananda G, Liu R, Kircher M, Lakshminarayana A, Harris BS, Karst SY, Dionne LA, Kane CC, Curtain M, Berry ML, Ward-Bailey PF, Greenstein I, Byers C, Czechanski A, Sharp J, Palmer K, Gudis P, Martin W, Tadenev A, Bogdanik L, Pratt CH, Chang B, Schroeder DG, Cox GA, Cliften P, Milbrandt J, Murray S, Burgess R, Bergstrom DE, Donahue LR, Hamamy H, Masri A, Santoni FA, Makrythanasis P, Antonarakis SE, Shendure J, Reinholdt LG. Exome sequencing reveals pathogenic mutations in 91 strains of mice with Mendelian disorders. Genome Res. 2015;25:948–57.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fischer MA, Davies ML, Reider IE, Heipertz EL, Epler MR, Sei JJ, Ingersoll MA, Rooijen NV, Randolph GJ, Norbury CC. CD11b+, Ly6G+ cells produce type I interferon and exhibit tissue protective properties following peripheral virus infection. PLoS Pathog. 2011;7:e1002374.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, Mulder GE, Toebes M, Vesely MD, Lam SS, Korman AJ, Allison JP, Freeman GJ, Sharpe AH, Pearce EL, Schumacher TN, Aebersold R, Rammensee HG, Melief CJ, Mardis ER, Gillanders WE, Artyomov MN, Schreiber RD. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515:577–81.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8.CrossRefPubMedGoogle Scholar

Copyright information

© Japan Human Cell Society and Springer Japan 2016

Authors and Affiliations

  • Hirotake Abe
    • 1
    • 2
  • Haruka Wada
    • 1
  • Muhammad Baghdadi
    • 1
  • Sayaka Nakanishi
    • 1
  • Yuu Usui
    • 1
  • Takahiro Tsuchikawa
    • 2
  • Toshiaki Shichinohe
    • 2
  • Satoshi Hirano
    • 2
  • Ken-ichiro Seino
    • 1
    Email author
  1. 1.Division of Immunobiology, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
  2. 2.Department of Gastroenterological Surgery IIHokkaido University Graduate School of MedicineSapporoJapan

Personalised recommendations