Human Cell

, Volume 25, Issue 2, pp 51–60 | Cite as

Ensheathing cell-conditioned medium directs the differentiation of human umbilical cord blood cells into aldynoglial phenotype cells

  • María Dolores Ponce-Regalado
  • Daniel Ortuño-Sahagún
  • Carlos Beas Zarate
  • Graciela Gudiño-Cabrera
Research Article


Despite their similarities to bone marrow precursor cells (PC), human umbilical cord blood (HUCB) PCs are more immature and, thus, they exhibit greater plasticity. This plasticity is evident by their ability to proliferate and spontaneously differentiate into almost any cell type, depending on their environment. Moreover, HUCB-PCs yield an accessible cell population that can be grown in culture and differentiated into glial, neuronal and other cell phenotypes. HUCB-PCs offer many potential therapeutic benefits, particularly in the area of neural replacement. We sought to induce the differentiation of HUCB-PCs into glial cells, known as aldynoglia. These cells can promote neuronal regeneration after lesion and they can be transplanted into areas affected by several pathologies, which represents an important therapeutic strategy to treat central nervous system damage. To induce differentiation to the aldynoglia phenotype, HUCB-PCs were exposed to different culture media. Mononuclear cells from HUCB were isolated and purified by identification of CD34 and CD133 antigens, and after 12 days in culture, differentiation of CD34+ HUCB-PCs to an aldynoglia phenotypic, but not that of CD133+ cells, was induced in ensheathing cell (EC)-conditioned medium. Thus, we demonstrate that the differentiation of HUCB-PCs into aldynoglia cells in EC-conditioned medium can provide a new source of aldynoglial cells for use in transplants to treat injuries or neurodegenerative diseases.


Ensheathing cells Cell differentiation Conditioned media Conditioned medium Aldynoglia Umbilical cord blood 



This work was partially supported by funding from the CONACYT to G.G.-C. (11-2933 53444) and a doctoral fellowship to M.D.P.-R. (194021). The authors are grateful to Dr. Jesús Santa-Olalla Tapia, Dr. Oscar González-Ramella, and Dr. Oscar González-Pérez for their support.

Conflict of interest



  1. 1.
    Goodwin HS, Bicknese AR, Chien SN, Bogucki BD, Quinn CO, Wall DA. Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol Blood Marrow Transplant. 2001;7:581–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Broxmeyer HE, Gluckman E, Auerbach A, Douglas GW, Friedman H, Cooper S, et al. Human umbilical cord blood: a clinically useful source of transplantable hematopoietic stem/progenitor cells. Int J Cell Cloning. 1990;1:76–89.CrossRefGoogle Scholar
  3. 3.
    Verfaillie CM, Schawartz R, Reyes M, Jiang Y. Unexpected potential of adults stem cells. Ann N Y Acad Sci. 2003;996:231–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Lasala GP, Minguell JJ. Bone marrow-derived stem/progenitor cells: their use in clinical studies for the treatment of myocardial infarction. Heart Lung Circ. 2009;18:171–80.PubMedCrossRefGoogle Scholar
  5. 5.
    Stanevsky A, Goldstein G, Nagler A. Umbilical cord blood transplantation: pros, cons and beyond. Blood Rev. 2009;23:199–204.PubMedCrossRefGoogle Scholar
  6. 6.
    Broxmeyer HE. Biology of cord blood cells and future prospects for enhanced clinical benefit. Cytotherapy. 2005;7:209–18.PubMedCrossRefGoogle Scholar
  7. 7.
    El-Badri NS, Hakki A, Saporta S, Liang X, Madhusodanan S, Willing AE, et al. Cord blood mesenchymal stem cells: potential use in neurological disorders. Stem Cells Dev. 2006;15:497–506.PubMedCrossRefGoogle Scholar
  8. 8.
    Nan Z, Grande A, Sanberg CD, Sanberg PR, Low WC. Infusion of human umbilical cord blood ameliorates neurologic deficits in rats with hemorrhagic brain injury. Ann N Y Acad Sci. 2005;1049:84–96.PubMedCrossRefGoogle Scholar
  9. 9.
    Newcomb JD, Ajmo CT Jr, Sanberg CD, Sanberg PR, Pennypacker KR, Willing AE. Timing of cord blood treatment after experimental stroke determines therapeutic efficacy. Cell Transplant. 2006;15:213–23.PubMedCrossRefGoogle Scholar
  10. 10.
    Arien-Zakay H, Lazarovici P, Nagler A. Tissue regeneration potential in human umbilical cord blood. Best Pract Res Clin Haematol. 2010;23:291–303.PubMedCrossRefGoogle Scholar
  11. 11.
    Baumann N, Turpin JC, Lefevre M, Colsch B. Degenerative neurological diseases of the central nervous system related to genetic neurolipidoses. Bull Acad Natl Med. 2003;187:141–51.PubMedGoogle Scholar
  12. 12.
    Nieto-Sampedro M, Collazos-Castro JE, Taylor JS, Gudino-Cabrera G, Verdu-Navarro E, Pascual-Piedrola JI, et al. Traumatic injuries to the central nervous system and their repair. Rev Neurol. 2002;35:534–52.PubMedGoogle Scholar
  13. 13.
    Gudiño-Cabrera G, Nieto-Sampedro M. Estrogen receptor immunoreactivity in Schwann-like brain macroglia. J Neurobiol. 1999;40:458–70.PubMedCrossRefGoogle Scholar
  14. 14.
    Gudiño-Cabrera G, Nieto-Sampedro M. Schwann-like macroglia in adult rat brain. Glia. 2000;30:49–63.PubMedCrossRefGoogle Scholar
  15. 15.
    Rojas-Mayorquín AE, Torres-Ruiz NM, Ortuño-Sahagún D, Gudiño-Cabrera G. Microarray analysis of striatal embryonic stem cells induced to differentiate by ensheating cell conditioned media. Dev Dyn. 2008;237:979–94.PubMedCrossRefGoogle Scholar
  16. 16.
    Rojas-Mayorquín AE, Torres-Ruíz NM, Gudiño-Cabrera G, Ortuño-Sahagún D. Subtractive hybridization identifies genes differentially expressed by olfactory ensheathing cells and neural stem cells. Int J Dev Neurosci. 2010;28:75–82.PubMedCrossRefGoogle Scholar
  17. 17.
    Kwon-Lee J. Allogeneic transplantation of mesenchymal stem cells from human umbilical cord blood. J Appl Biol Chem. 2007;50:187–95.Google Scholar
  18. 18.
    Gudiño-Cabrera G, Nieto-Sampedro M. Ensheathing cells: large scale purification from adult olfactory bulb, freeze-preservation and migration of transplanted cells in adult brain. Restor Neurol Neurosci. 1996;10:25–34.PubMedGoogle Scholar
  19. 19.
    Okuda K, Kawase T, Momose M, Murata M, Saito Y, Suzuki H, et al. Platelet-rich plasma contains high levels of platelet-derived growth factor and transforming growth factor-beta and modulates the proliferation of periodontally related cells in vitro. J Periodontol. 2003;74:849–57.PubMedCrossRefGoogle Scholar
  20. 20.
    Doucet C, Ernou I, Zhang Y, Llense JR, Begot L, Holy X, et al. Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. J Cell Physiol. 2005;205:228–36.PubMedCrossRefGoogle Scholar
  21. 21.
    Vogel JP, Szalay K, Geiger F, Kramer M, Richter W, Kasten P. Platelet-rich plasma improves expansion of human mesenchymal stem cells and retains differentiation capacity and in vivo bone formation in calcium phosphate ceramics. Platelets. 2006;17:462–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Kocaoemer A, Kern S, Klüter H, Bieback K. Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells. 2007;5:1270–8.CrossRefGoogle Scholar
  23. 23.
    Grskovic B, Ruzicka K, Karimi A, Qujeq D, Müller MM. Cell cycle analysis of the CD133+ and CD133− cells isolated from umbilical cord blood. Clin Chim Acta. 2004;343:173–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Peters R, Wolf MJ, Van den Broek M, Nuvolone M, Dannenmann S, Stieger B, et al. Efficient generation of multipotent mesenchymal stem cells from umbilical cord blood in stroma-free liquid culture. PLoS ONE. 2010;5:e15689.PubMedCrossRefGoogle Scholar
  25. 25.
    McGuckin CP, Forraz N, Baradez MO, Navran S, Zhao J, Urban R, et al. Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif. 2005;38:245–55.PubMedCrossRefGoogle Scholar
  26. 26.
    Chen N, Hudson JE, Walczak P, Misiuta I, Garbuzova-Davis S, Jiang L, et al. Human umbilical cord blood progenitors: the potential of these hematopoietic cells to become neural. Stem Cells. 2005;23:1560–70.PubMedCrossRefGoogle Scholar
  27. 27.
    Ortuño-Sahagún D, Rojas-Mayorquín AE, Camins A, Pallás M. Embryonic neural stem cell differentiation to aldynoglia induced by olfactory bulb ensheathing cell-conditioned medium. In: Atwood C, editor. Embryonic stem cells: the hormonal regulation of pluripotency and embryogenesis. Croatia: InTech; 2011. p. 365–82.Google Scholar
  28. 28.
    Watt SM, Contreras M. Stem cell medicine: umbilical cord blood and its stem cell potential. Semin Fetal Neonatal Med. 2005;10:209–20.PubMedCrossRefGoogle Scholar
  29. 29.
    McGuckin C, Forraz N, Baradez MO, Basford C, Dickinson AM, Navran S, et al. Embryonic-like stem cells from umbilical cord blood and potential for neural modeling. Acta Neurobiol Exp (Wars). 2006;66:321–9.Google Scholar
  30. 30.
    Lee M, Moon Y, Yang M, Kim S, Jang I, Eom Y, Park J, et al. Neural differentiation of novel multipotent progenitor cells from cryopreserved human umbilical cord blood. Biochem Biophys Res Commun. 2007;358:637–43.PubMedCrossRefGoogle Scholar
  31. 31.
    Buzanska L, Machaj EK, Zabłocka B, Pojda Z, Domańska-Janik K. Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci. 2002;115:2131–8.PubMedGoogle Scholar
  32. 32.
    Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods. 2005;2:185–90.PubMedCrossRefGoogle Scholar
  33. 33.
    Nelson AD, Suzuki M, Svendsen CN. A high concentration of epidermal growth factor increases the growth and survival of neurogenic radial glial cells within human neurosphere cultures. Stem Cells. 2008;26:348–55.PubMedCrossRefGoogle Scholar
  34. 34.
    Szymczak P, Wojcik-Stanaszek L, Sypecka J, Sokolowska A, Zalewska T. Effect of matrix metalloproteinases inhibition on the proliferation and differentiation of HUCB-NSCs cultured in the presence of adhesive substrates. Acta Neurobiol Exp (Wars). 2010;70:325–36.Google Scholar
  35. 35.
    Bhatia M, Bonnet D, Wu D, Murdoch B, Wrana J, Gallacher L, et al. Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. J Exp Med. 1999;189:1139–48.PubMedCrossRefGoogle Scholar
  36. 36.
    Davidson AJ, Zon L. Turning mesoderm into blood: the formation of hematopoietic stem cells during embryogenesis. Curr Top Dev Biol. 2000;50:45–60.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425:836–41.PubMedCrossRefGoogle Scholar
  38. 38.
    Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425:841–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Jurga M, Markiewicz I, Sarnowska A, Habich A, Kozlowska H, Lukomska B, et al. Neurogenic potential of human umbilical cord blood: neural-like stem cells depend on previous long-term culture conditions. J Neurosci Res. 2006;83:627–37.PubMedCrossRefGoogle Scholar
  40. 40.
    McGuckin C, Jurga M, Ali H, Strbad M, Forraz N. Culture of embryonic-like stem cells from human umbilical cord blood and onward differentiation to neural cells in vitro. Nat Protoc. 2008;3:1046–55.PubMedCrossRefGoogle Scholar
  41. 41.
    Harris DT. Cord blood stem cells: a review of potential neurological applications. Stem Cell Rev. 2008;4:269–74.PubMedCrossRefGoogle Scholar
  42. 42.
    Bracci-Laudiero L, Celestino D, Starace G, Antonelli A, Lambiase A, Procoli A, et al. CD34-positive cells in human umbilical cord blood express nerve growth factor and its specific receptor TrkA. J Neuroimmunol. 2003;136:130–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Zangiacomi V, Balon N, Maddens S, Lapierre V, Tiberghien P, Schlichter R, et al. Cord blood-derived neurons are originated from CD133+/CD34 stem/progenitor cells in a cell-to-cell contact dependent manner. Stem Cells Dev. 2008;17:1005–16.PubMedCrossRefGoogle Scholar
  44. 44.
    Rogers I, Yamanaka N, Bielecki R, Wong CJ, Chua S, Yuen S, et al. Identification and analysis of in vitro cultured CD45-positive cells capable of multi-lineage differentiation. Exp Cell Res. 2007;313:1839–52.PubMedCrossRefGoogle Scholar
  45. 45.
    Bonanno G, Perillo A, Rutella S, De Ritis DG, Mariotti A, Marone M, et al. Clinical isolation and functional characterization of cord blood CD133+ hematopoietic progenitor cells. Transfusion. 2004;44:1087–97.PubMedCrossRefGoogle Scholar
  46. 46.
    Brugger W, Möcklin W, Heimfeld S, Berenson RJ, Mertelsmann R, Kanz L. Ex vivo expansion of enriched peripheral blood CD34+ progenitor cells by stem cell factor, interleukin-1 beta (IL-1 beta), IL-6, IL-3, interferon-gamma, and erythropoietin. Blood. 1993;81:2579–84.PubMedGoogle Scholar
  47. 47.
    Engelhardt M, Lübbert M, Guo Y. CD34(+) or CD34(−): which is the more primitive? Leukemia. 2002;16:1603–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Szilvassy SJ. The biology of hematopoietic stem cells. Arch Med Res. 2003;34:446–60.PubMedCrossRefGoogle Scholar
  49. 49.
    Ivanovic Z. Hematopoietic stem cells in research and clinical applications: the “CD34 issue”. World J Stem Cells. 2010;2:18–23.PubMedCrossRefGoogle Scholar
  50. 50.
    Hess DA, Meyerrose TE, Wirthlin L, Craft PT, Herrbrich PE, Creer MH, et al. Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehygrogenase activity. Blood. 2004;104:1648–55.PubMedCrossRefGoogle Scholar
  51. 51.
    Panepucci RA, Siufi JL, Silva WA Jr, Proto-Siquiera R, Neder L, et al. Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells. 2004;22:1263–78.PubMedCrossRefGoogle Scholar
  52. 52.
    Ali H, Jurga M, Kurgonaite K, Forraz N, McGuckin C. Defined serum-free culturing conditions for neural tissue engineering of human cord blood stem cells. Acta Neurobiol Exp (Wars). 2009;69:12–23.Google Scholar
  53. 53.
    Domanska-Janik K, Habich A, Sarnowska A, Janowski M. Neural commitment of cord blood stem cells (HUCB-NSC/NP): therapeutic perspectives. Acta Neurobiol Exp (Wars). 2006;66:279–91.Google Scholar
  54. 54.
    Goolsby J, Marty MC, Heletz D, Chiappelli J, Tashko G, Yarnell D, et al. Hematopoietic progenitors express neural genes. Proc Natl Acad Sci USA. 2003;100:14926–31.PubMedCrossRefGoogle Scholar
  55. 55.
    Walczak P, Chen N, Hudson JE, Willing AE, Garbuzova-Davis SN, Song S, et al. Do hematopoietic cells exposed to a neurogenic environment mimic properties of endogenous neural precursors? J Neurosci Res. 2004;76:244–54.PubMedCrossRefGoogle Scholar
  56. 56.
    Tio M, Tan KH, Lee W, Wang TT, Udolph G. Roles of db-cAMP, IBMX and RA in aspects of neural differentiation of cord blood derived mesenchymal-like stem cells. PLoS ONE. 2010;5:e9398.PubMedCrossRefGoogle Scholar
  57. 57.
    Wong CJ, Casper RF, Rogers IM. Epigenetic changes to human umbilical cord blood cells cultured with three proteins indicate partial reprogramming to a pluripotent state. Exp Cell Res. 2010;316:927–39.PubMedCrossRefGoogle Scholar
  58. 58.
    Sánchez-Ramos JR, Song S, Kamath SG, Zigova T, Willing A, Cardozo-Pelaez F, et al. Expression of neural markers in human umbilical cord blood. Exp Neurol. 2001;171:109–15.PubMedCrossRefGoogle Scholar
  59. 59.
    Sanberg PR, Willing AE, Garbuzova-Davis S, Saporta S, Liu G, Sanberg CD, et al. Umbilical cord blood-derived stem cells and brain repair. Ann N Y Acad Sci. 2005;1049:67–83.PubMedCrossRefGoogle Scholar
  60. 60.
    Kim JY, Jeon HB, Yang YS, Oh W, Chang JW. Application of human umbilical cord blood-derived mesenchymal stem cells in disease models. World J Stem Cells. 2010;2:34–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Furue MK, Tateyama D, Kinehara M, Na J, Okamoto T, Sato JD. Advantages and difficulties in culturing human pluripotent stem cells in growth factor-defined serum-free medium. In vitro Cell Dev Biol Anim. 2010;46:573–6.CrossRefGoogle Scholar
  62. 62.
    Mimura S, Kimura N, Hirata M, Tateyama D, Hayashida M, Umezawa A, et al. Growth factor-defined culture medium for human mesenchymal stem cells. Int J Dev Biol. 2011;55:181–7.PubMedCrossRefGoogle Scholar

Copyright information

© Japan Human Cell Society and Springer 2012

Authors and Affiliations

  • María Dolores Ponce-Regalado
    • 1
  • Daniel Ortuño-Sahagún
    • 1
  • Carlos Beas Zarate
    • 1
  • Graciela Gudiño-Cabrera
    • 1
  1. 1.Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Instituto de NeurobiologíaC.U.C.B.A, Universidad de GuadalajaraGuadalajaraMexico

Personalised recommendations