Sankhya B

, Volume 77, Issue 2, pp 207–239 | Cite as

A New Long-Term Survival Model with Interval-Censored Data

  • Elizabeth M. Hashimoto
  • Edwin M. M. OrtegaEmail author
  • Gauss M. Cordeiro
  • Vicente G. Cancho


We propose a flexible cure rate survival model by assuming that the number of competing causes of the event of interest has a negative binomial distribution and the time to event has a Weibull distribution for interval-censored data. An advantage is that this model includes as special cases some well-known cure rate models discussed in the literature. We also propose the negative binomial Weibull distribution, which is a quite flexible model to analyze positive data. We provide explicit expressions for the moments and generating function. We consider a frequentist analysis and nonparametric bootstrap for parameter estimation of the negative binomial Weibull regression model for interval-censored data with cure rate. Further, we derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and present some ways to perform global influence analysis. We analyze two real data sets from the medical area to prove the flexibility of the proposed models.

Keywords and phrases.

Cure fraction models Lifetime data Negative binomial distribution Sensitivity analysis Weibull distribution 

AMS (2000) subject classification.

Primary 62N01 Secondary 62N02 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balakrishnan, N., Leiva, V. and Sanhueza, A. (2009). Mixture inverse Gaussian distribution and its transformations, moments and applications. Statistics 43, 911–104.CrossRefMathSciNetGoogle Scholar
  2. Barreto-Souza, W., Lemos, A. and Cordeiro, G.M. (2011). The Weibull-geometric distribution 81, 645–657.Google Scholar
  3. Berkson J. and Gage R. P. (1952). Survival cure for cancer patients following treatment. Journal of the American Statistical Association 47, 501–515.CrossRefGoogle Scholar
  4. Boag, J. W. (1949). Maximum likelihood estimates of the proportion of patients cured by cancer therapy. Journal of the Royal Statistical Society B 11, 15–53.zbMATHGoogle Scholar
  5. Cancho, V. G., Ortega, E. M. M. and Bolfarine, H. (2009). The log-exponentiated-Weibull regression models with cure rate: Local influence and residual analysis. Journal of Data Science 7, 433–458.Google Scholar
  6. Colosimo, E. A. and Giolo, S. R. (2006). Análise de Sobrevivência Aplicada. Edgard Blücher, São Paulo.Google Scholar
  7. Cook, R. D. (1986). Assessment of local influence. Journal of the Royal Statistical Society, Series B 48, 133–169.zbMATHGoogle Scholar
  8. Cook, R. D. and Weisberg, S. (1982). Residuals and Influence in Regression. Chapman & Hall/CRC, Boca Raton.zbMATHGoogle Scholar
  9. Cooner, F., Banerjee, S., Carlin, B. P. and Sinha, D. (2007). Flexible cure rate modeling under latent activation schemes. Journal of the American Statistical Association 102, 560–572.CrossRefMathSciNetzbMATHGoogle Scholar
  10. Davison, A. and Hinkley, D. (1997). Bootstrap methods and their application. Cambridge University Press.Google Scholar
  11. de Castro, M., Cancho, V. G. and Rodrigues, J. (2009). A bayesian long-term survival model parametrized in the cured fraction. Biometrical Journal 51, 443–455.CrossRefMathSciNetGoogle Scholar
  12. de Castro, M., Cancho, V. G. and Rodrigues, J. (2010). A note on a unified approach for cure rate models. Brazilian Journal of Probability and Statistics 24, 10–13.MathSciNetGoogle Scholar
  13. DiCiccio, T. and Efron, B. (1996). Bootstrap confidence intervals. Statistical Science 11, 189–212.Google Scholar
  14. Doornik, J. A. (2002). Object-Oriented Matrix Programming Using Ox, 3rd ed. Timberlake Consultants Press and Oxford, London.Google Scholar
  15. Efron, B. (1979). Bootstrap methods: another look at the jackknife. The Annals of Statistics 7, 1–26.CrossRefMathSciNetzbMATHGoogle Scholar
  16. Efron, B. and Tibshirani, R. (1993). An introduction to the bootstrap. Chapman & Hill, p. 436.Google Scholar
  17. Fachini, J. B., Ortega, E. M. M. and Louzada-Neto, F. (2008). Influence diagnostics for polyhazard models in the presence of covariates. Statistical Methods and Applications 17, 413–433.CrossRefMathSciNetzbMATHGoogle Scholar
  18. Gradshteyn, I. S. and Ryzhik, I. M. (2000). Table of Integrals, Series and Products (sixth edition). Academic Press, San Diego.Google Scholar
  19. Hashimoto, E. M., Ortega, E. M. M., Cancho, V. G. and Cordeiro, G. M. (2010). The log-exponentiated weibull regression model for interval-censored data. Computational Statistics and Data Analysis 54, 1017–1035.CrossRefMathSciNetzbMATHGoogle Scholar
  20. Ibrahim, J. G., Chen, M.-H. and Sinha, D. (2001). Bayesian Survival Analysis. Springer, New York.CrossRefzbMATHGoogle Scholar
  21. Kim, M. Y., DeGruttola, V. G. and Lagakos, S. W. (1993). Analyzing doubly censored data with covariates, with application to aids. Biometrics 49, 13–22.CrossRefzbMATHGoogle Scholar
  22. Maller, R. A. and Zhou, X. (1996). Survival Analysis with Long-Term Survivors. Wiley, New York.zbMATHGoogle Scholar
  23. Mudholkar, G. S., Srivastava, D. K. and Friemer, M. (1995). The exponentiated Weibull family: A reanalysis of the bus-motor-failure data. Technometrics 37, 436–445.CrossRefzbMATHGoogle Scholar
  24. Nadarajh, S. and Kotz, S. (2006). The beta exponential distribution. Reliability Engineering and System Safety 91, 689–697.CrossRefGoogle Scholar
  25. Ortega, E. M. M., Bolfarine, H. and Paula, G. A. (2003). Influence diagnostics in generalized log-gamma regression models. Computational Statistics and Data Analysis 42, 165–186.CrossRefMathSciNetzbMATHGoogle Scholar
  26. Piegorsch, W. W. (1990). Maximum likelihood estimation for the negative binomial dispersion parameter. Biometrics 46, 863–867.CrossRefMathSciNetGoogle Scholar
  27. Press, W. H., Teulosky, S. A., Veterling, W. T. and Flannery, B. P. (1992). Numerical recipes in C: The Art of Sscientific Computing, 2nd ed. Prentice Hall, London.Google Scholar
  28. Prudnikov, A. P., Brychkov, Y. A. and Marichev, O. I. (1986). Integrals and Series, vol. 1. Gordon and Breach Science Publishers, Amsterdam.Google Scholar
  29. Rodrigues, J., Cancho, V. G. and Castro, M. (2008) Teoria Unificada de Longa Duração. SINAPE, Associação Brasileira de Estatística, Universidade de São Paulo.Google Scholar
  30. Ross, G. J. S. and Preece, D. A. (1985). The negative binomial distribution. The Statistician 34, 323–336.CrossRefGoogle Scholar
  31. Saha, K. and Paul, S. (2005). Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter. Biometrics 61, 179–185.CrossRefMathSciNetzbMATHGoogle Scholar
  32. Silva, G. O., Ortega, E. M. M., Cancho, V. G. and Barreto, M. L. (2008). Log-Burr XII regression models with censored data. Computational Statistics and Data Analysis 52, 3820–3842.CrossRefMathSciNetzbMATHGoogle Scholar
  33. Sun, J., Liao, Q. and Pagano, M. (1999). Regression analysis of doubly censored failure time data with applications to aids studies. Biometrics 55, 1, 909–914.CrossRefzbMATHGoogle Scholar
  34. Tournoud, M. and Ecochard, R. (2008). Promotion time models with time-changing exposure and heterogeneity: Application to infectious diseases. Biometrical Journal 50, 395–407.CrossRefMathSciNetGoogle Scholar
  35. Tsodikov, A. D., Ibrahim, J. G. and Yakovlev, A. Y. (2003). Estimating cure rates from survival data: an alternative to two-component mixture models. Journal of the American Statistical Association 98, 1063–1078.CrossRefMathSciNetGoogle Scholar
  36. Turnbull, W. (1976). The empirical distribution function with arbitrarily grouped censored and truncated data. Journal of the Royal Statistical Society B 38, 290–295.MathSciNetzbMATHGoogle Scholar
  37. Yakovlev, A. Y. and Tsodikov, A. D. (1996). Stochastic Models of Tumor Latency and Their Biostatistical Applications. World Scientific, Singapore.zbMATHGoogle Scholar
  38. Zhu, H. and Zhang, H. (2004). A diagnostic procedure based on local influence. Biometrika 91, 579–589.CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Indian Statistical Institute 2015

Authors and Affiliations

  • Elizabeth M. Hashimoto
    • 1
  • Edwin M. M. Ortega
    • 1
    Email author
  • Gauss M. Cordeiro
    • 2
  • Vicente G. Cancho
    • 3
  1. 1.Departamento de Ciências ExatasUniversidade de São PauloPiracicaba, SPBrazil
  2. 2.Departamento de EstatísticaUniversidade Federal de PernambucoRecifeBrazil
  3. 3.Departamento de Matemática Aplicada e EstatísticaUniversidade de São PauloSão CarlosBrazil

Personalised recommendations