Advertisement

Sankhya B

, Volume 73, Issue 2, pp 331–359 | Cite as

A generalized Lindley distribution

  • Saralees NadarajahEmail author
  • Hassan S. Bakouch
  • Rasool Tahmasbi
Article

Abstract

A new distribution is proposed for modeling lifetime data. It has better hazard rate properties than the gamma, lognormal and the Weibull distributions. A comprehensive account of the mathematical properties of the new distribution including estimation and simulation issues is presented. A real data example is discussed to illustrate its applicability.

Keywords

Gamma distribution Lindley distribution Lognormal distribution Weibull distribution 

Notes

Acknowledgements

The authors would like to thank the Editor-in-Chief and the referee for careful reading and for their comments which greatly improved the paper.

References

  1. Bonferroni, C.E. 1930. Elementi di statistica generale. Seeber, Firenze.Google Scholar
  2. Chen, C. 2006. Tests of fit for the three-parameter lognormal distribution. Computational Statistics and Data Analysis 50:1418–1440.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., and D.E. Knuth. 1996. On the Lambert W function. Advances in Computational Mathematics 5:329–359.MathSciNetzbMATHCrossRefGoogle Scholar
  4. Ghitany, M.E., and D.K. Al-Mutairi. 2009. Estimation methods for the discrete Poisson-Lindley distribution. Journal of Statistical Computation and Simulation 79:1–9.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Ghitany, M.E., Al-Mutairi, D.K., and S. Nadarajah. 2008a. Zero-truncated Poisson-Lindley distribution and its application. Mathematics and Computers in Simulation 79:279–287.MathSciNetzbMATHCrossRefGoogle Scholar
  6. Ghitany, M.E., Atieh, B., and S. Nadarajah. 2008b. Lindley distribution and its application. Mathematics and Computers in Simulation 78:493–506.MathSciNetzbMATHCrossRefGoogle Scholar
  7. Gross, A.J., and V.A. Clark. 1975. Survival distributions: Reliability applications in the biomedical sciences. New York: John Wiley and Sons.zbMATHGoogle Scholar
  8. Gupta, R.D., and D. Kundu. 1999. Generalized exponential distributions. Australian and New Zealand Journal of Statistics 41:173–188.MathSciNetzbMATHCrossRefGoogle Scholar
  9. Gupta, R.D., and D. Kundu. 2007. Generalized exponential distribution: Existing results and some recent developments. Journal of Statistical Planning and Inference 137:3537–3547.MathSciNetzbMATHCrossRefGoogle Scholar
  10. Hoskings, J.R.M. 1990. L-moments: analysis and estimation of distribution using linear combinations of order statistics. Journal of the Royal Statistical Society B, 52:105–124.Google Scholar
  11. Jodrá, J. 2010. Computer generation of random variables with Lindley or Poisson–Lindley distribution via the Lambert W function. Mathematics and Computers in Simulation 81:851–859.MathSciNetzbMATHCrossRefGoogle Scholar
  12. Leadbetter, M.R., Lindgren, G., and H. Rootzén 1987. Extremes and related properties of random sequences and processes. New York: Springer Verlag.Google Scholar
  13. Lindley, D.V. 1958. Fiducial distributions and Bayes’ theorem. Journal of the Royal Statistical Society B, 20:102–107.MathSciNetzbMATHGoogle Scholar
  14. Murthy, D.N.P., Xie, M., and R. Jiang. 2004. Weibull models. New York: John Wiley and Sons.zbMATHGoogle Scholar
  15. Nadarajah, S., Bakouch, H.S., and R. Tahmasbi. 2011. A generalized Lindley distribution. Technical Report, School of Mathematics, University of Manchester, UK.Google Scholar
  16. Nadarajah, S., and A.K. Gupta. 2007. The exponentiated gamma distribution with application to drought data. Calcutta Statistical Association Bulletin 59:233–234.MathSciNetGoogle Scholar
  17. Rao, C.R. 1973. Linear statistical inference and its applications, 2nd edn. New York: John Wiley and Sons.zbMATHCrossRefGoogle Scholar
  18. Rao, M., Chen, Y., Vemuri, B.C., and F. Wang. 2004. Cumulative residual entropy: A new measure of information. IEEE Transactions on Information Theory 50:1220–1228.MathSciNetCrossRefGoogle Scholar
  19. Rényi, A. 1961. On measures of entropy and information. In Proceedings of the 4th berkeley symposium on mathematical statistics and probability, vol. 1, 547–561. Berkeley: University of California Press.Google Scholar
  20. Shaked, M., and J.G. Shanthikumar. 1994. Stochastic orders and their applications. Boston: Academic Press.zbMATHGoogle Scholar
  21. Shannon, C.E. 1951. Prediction and entropy of printed English. The Bell System Technical Journal 30:50–64.zbMATHGoogle Scholar

Copyright information

© Indian Statistical Institute 2012

Authors and Affiliations

  • Saralees Nadarajah
    • 1
    Email author
  • Hassan S. Bakouch
    • 2
  • Rasool Tahmasbi
    • 3
  1. 1.School of MathematicsUniversity of ManchesterManchesterUK
  2. 2.Department of StatisticsKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Department of Mathematics and Computer ScienceAmirkabir University of TechnologyTehranIran

Personalised recommendations