Advertisement

Journal of Radiation Oncology

, Volume 7, Issue 4, pp 293–305 | Cite as

Clinical evidence for dose tolerance of the central nervous system in hypofractionated radiotherapy

  • Jinyu Xue
  • Bahman Emami
  • Jimm Grimm
  • Gregory J. Kubicek
  • Sucha O. Asbell
  • Rachelle Lanciano
  • James S. Welsh
  • Luke Peng
  • Harry Quon
  • Wolfram Laub
  • Chengcheng Gui
  • Nicholas Spoleti
  • Indra J. Das
  • Howard Warren Goldman
  • Kristin J. Redmond
  • Lawrence R. Kleinberg
  • Luther W. Brady
Original Research
  • 71 Downloads

Abstract

Background

Stereotactic radiosurgery (SRS), stereotactic body radiotherapy (SBRT), and stereotactic ablative body radiotherapy (SABR) are commonly used in the treatment of central nervous system (CNS) disease. This study has refined the radiation toxicity estimates for some normal tissues of the CNS based on review and analysis of the clinical evidence for single fraction radiosurgery, hypofractionated SBRT, and conventionally fractionated radiation therapy.

Methods

Published guidelines and protocols are reviewed. In the past, many normal tissue tolerances were compiled based on the experience of the investigators and publications in the literature. Some tolerances were determined by modeling or calculation using the existing biological formulas, in particular the linear quadratic (LQ) model. In the present study, the estimate of risk for each dose tolerance limit in some CNS tissues is provided exclusively with normal tissue complication probability (NTCP). The clinical outcomes are compared to understand the difference in biological effect between radiosurgery and radiotherapy.

Results

Normal tissue dose tolerances and the corresponding complication rates are provided for brainstem, optic nerves, cochlea, and spinal cord, including single fraction SRS, five-fraction SBRT, and conventional radiation therapy. Calculation of biologically effective dose (BED) or single fraction equivalent dose (SFED) alone using the LQ model conveys no consensus on the biological effect across different fractionations. Comparison of conventional radiation therapy to brain and spinal cord with single fraction equivalent dose leads to even conflicting clinical outcomes.

Conclusions

Effective differences between single fraction SRS and conventional radiotherapy need to be better understood. The existing biological model might not be valid to predict the radiosurgical outcomes based on conventionally fractionated radiotherapy. However, application of the statistical dose response models of clinical SRS and SBRT outcomes data to selected current dose tolerance guidelines into simple tables can be a clinically useful resource.

Keywords

Radiosurgery Radiotherapy Fractionation Toxicities Biologically effective dose Outcomes 

Abbreviation

AE

Adverse event

BED

Biologically effective dose

CNS

Central nervous system

GTV

Gross tumor volume

HyTEC

High Dose per Fraction, Hypofractionated Treatment Effects in the Clinic

LQ

Linear quadratic

MLE

Maximum likelihood estimate

NfxED

N-fraction equivalent dose

NTCP

Normal tissue complication probability

QUANTEC

Quantitative Analysis of Normal Tissue Effects in the Clinic

RT

Radiation therapy

RTOG

Radiation therapy oncology group

SABR

Stereotactic ablative body radiotherapy

SBRT

Stereotactic body radiation therapy

SFED

Single fraction equivalent dose

SRS

Stereotactic radiosurgery

WBRT

Whole brain radiation therapy

Notes

Compliance with ethical standards

Funding

This work was partially supported by a grant from Accuray.

Conflict of interest

Dr. Kleinberg has received research grants from Novocure, Arbor, Accuray, has performed consulting for Novocure, Accuray, and is on the advisory board for Novocure. Dr. Redmond has received research funding from Elekta AB and Accuray, as well as travel expenses and honorarium for speaking for Accuray. Dr. Grimm developed and holds intellectual property rights to the DVH Evaluator software tool which is an FDA-cleared product in commercial use, and which has been used for this analysis; and has received research grants from Novocure and Accuray. All other authors declare that they have no relevant conflict of interest.

Ethical approval

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008.

Informed consent

Informed consent was not applicable due to the retrospective nature of brain dose tolerance study. All other data was from the published literature.

References

  1. 1.
    Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21(1):109–122Google Scholar
  2. 2.
    Emami B, Roeske J, Block A, Welsh JS (2017) The Emami paper 25 years later. J Radiat Oncol 6(1):1–9Google Scholar
  3. 3.
    Marks LB, Ten Haken RK, Martel MK (2010) Guest editor’s introduction to QUANTEC: a users guide. Int J Radiat Oncol Biol Phys 76(3 Suppl):S1–S2PubMedGoogle Scholar
  4. 4.
    Asbell SO, Grimm J, Xue J, Chew MS, LaCouture TL (2016) Introduction and clinical overview of the DVH risk map. Semin Radiat Oncol 26(2):89–96PubMedGoogle Scholar
  5. 5.
    Grimm J, Sahgal A, Soltys SG, Luxton G, Patel A, Herbert S, Xue J, Ma L, Yorke E, Adler JR, Gibbs IC (2016) Estimated risk level of unified stereotactic body radiation therapy dose tolerance limits for spinal cord. Semin Radiat Oncol 26(2):165–171PubMedPubMedCentralGoogle Scholar
  6. 6.
    Hiniker SM, Modlin LA, Choi CY, Atalar B, Seiger K, Binkley MS, Harris JP, Liao YJ, Fischbein N, Wang L, Ho A, Lo A, Chang SD, Harsh GR, Gibbs IC, Hancock SL, Li G, Adler JR, Soltys SG (2016) Dose-response modeling of the visual pathway tolerance to single-fraction and hypofractionated stereotactic radiosurgery. Semin Radiat Oncol 26(2):97–104PubMedGoogle Scholar
  7. 7.
    Rashid A, Karam SD, Rashid B, Kim JH, Pang D, Jean W, Grimm J, Collins SP (2016) Multisession radiosurgery for hearing preservation. Semin Radiat Oncol 26(2):105–111PubMedGoogle Scholar
  8. 8.
    Coia L, Galvin J, Sontag M, Blitzer P, Brenner H, Cheng E, Doppke K, Harms W, Hunt M, Mohan R, Munzenrider J, Simpson J (1991) Three-dimensional photon treatment planning in carcinoma of the larynx. Int J Radiat Oncol Biol Phys 21(1):183–192PubMedGoogle Scholar
  9. 9.
    Simpson JR, Purdy JA, Manolis JM, Pilepich MV, Burman C, Forman J, Fuks Z, Cheng E, Chu J, Matthews J, Mohan R, Solin L, Tepper J, Urie M (1991) Three-dimensional treatment planning considerations for prostate cancer. Int J Radiat Oncol Biol Phys 21(1):243–252PubMedGoogle Scholar
  10. 10.
    Shank B, LoSasso T, Brewster L, Burman C, Cheng E, Chu JC, Drzymala RE, Manolis J, Pilepich MV, Solin LJ, Tepper JE, Urie M (1991) Three-dimensional treatment planning for postoperative treatment of rectal carcinoma. Int J Radiat Oncol Biol Phys 21(1):253–265PubMedGoogle Scholar
  11. 11.
    Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, Bentzen SM, Nam J, Deasy JO (2010) Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 76(3 Suppl):S10–S19PubMedPubMedCentralGoogle Scholar
  12. 12.
    Milano MT, Grimm J, Soltys SG, Yorke E, Moiseenko V, Tomé WA, Sahgal A, Xue J, Ma L, Solberg T, Kirkpatrick JP, Constine LS, Flickinger JC, Marks LB, El Naqa I. Single and multi-fraction stereotactic radiosurgery dose tolerances of the optic pathways. Int J Radiat Oncol Biol Phys. [HyTEC issue, In Press]Google Scholar
  13. 13.
    Vargo JA, Moiseenko V, Grimm J, Caudell J, Clump DA, Yorke E, Xue J, Vinogradskiy Y, Moros EG, Mavroidis P, Jain S, El Naqa I, Marks LB, Heron DE. Head and neck tumor control probability: radiation dose-volume effects in SBRT for locally-recurrent previously-irradiated head and neck cancer. Int J Radiat Oncol Biol Phys. [HyTEC issue, In Press]Google Scholar
  14. 14.
    Ohri N, Tomé WA, Méndez Romero A, Miften M, Ten Haken RK, Dawson LA, Grimm J, Yorke E, Jackson A. Local control following stereotactic body radiation therapy for liver tumors. Int J Radiat Oncol Biol Phys. [HyTEC issue, In Press]Google Scholar
  15. 15.
    Miften M, Vinogradskiy Y, Moiseenko V, Grimm J, Yorke E, Jackson A, Tomé WA, Ten Haken R, Ohri N, Méndez Romero A, Goodman KA, Marks LB, Kavanagh B, Dawson LA. Radiation dose-volume effects for liver SBRT. Int J Radiat Oncol Biol Phys. [HyTEC issue, In Press]Google Scholar
  16. 16.
    Puck TT, Marcus PI (1956) Action of x-rays on mammalian cells. J Exp Med 103(5):653–666PubMedPubMedCentralGoogle Scholar
  17. 17.
    Borst GR, Ishikawa M, Nijkamp J, Hauptmann M, Shirato H, Bengua G, Onimaru R, de Josien BA, Lebesque JV, Sonke JJ (2010) Radiation pneumonitis after hypofractionated radiotherapy: evaluation of the LQ(L) model and different dose parameters. Int J Radiat Oncol Biol Phys 77(5):1596–1603PubMedGoogle Scholar
  18. 18.
    Fowler JF (2010) 21 years of biologically effective dose. Br J Radiol 83(991):554–568PubMedPubMedCentralGoogle Scholar
  19. 19.
    Dale RG (1985) The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br J Radiol 58(690):515–528PubMedGoogle Scholar
  20. 20.
    Fowler JF, Stern BE (1958) Dose-rate factors in integral dose estimations [letter]. Br J Radiol 31:316Google Scholar
  21. 21.
    Fowler JF, Stern BE (1960) Dose-rate effects: some theoretical and practical considerations. Br J Radiol 33:389–395PubMedGoogle Scholar
  22. 22.
    Fowler JF (1989) The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 62(740):679–694PubMedGoogle Scholar
  23. 23.
    Hall EJ, Giacca AJ (2012) Radiobiology for the radiologist, 7th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  24. 24.
    Joiner M, Avd K (eds) (2009) Basic clinical radiobiology 4th Edition. Hodder Arnold, Great BritainGoogle Scholar
  25. 25.
    Brown JM, Brenner DJ, Carlson DJ (2013) Dose escalation, not “new biology,” can account for the efficacy of stereotactic body radiation therapy with non-small cell lung cancer. Int J Radiat Oncol Biol Phys 85(5):1159–1160PubMedPubMedCentralGoogle Scholar
  26. 26.
    Brown JM, Carlson DJ, Brenner DJ (2014) The tumor radiobiology of SRS and SBRT: are more than the 5 Rs involved? Int J Radiat Oncol Biol Phys 88(2):254–262PubMedPubMedCentralGoogle Scholar
  27. 27.
    Kehwar TS, Rathore RP, Supe SJ, Gupta MK (1995) Many component model and its parameters to fractionated irradiation. Strahlenther Onkol 171(10):573–580PubMedGoogle Scholar
  28. 28.
    Guerrero M, Li XA (2004) Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy. Phys Med Biol 49(20):4825–4835PubMedGoogle Scholar
  29. 29.
    Kirkpatrick JP, Marks LB (2004) Modeling killing and repopulation kinetics of subclinical cancer: direct calculations from clinical data. Int J Radiat Oncol Biol Phys 58:641–654PubMedGoogle Scholar
  30. 30.
    Carlone M, Wilkins D, Raaphorst P (2005) The modified linear-quadratic model of Guerrero and Li can be derived from a mechanistic basis and exhibits linear-quadratic-linear behaviour. Phys Med Biol. 50(10):L9–13; author reply L13–5.Google Scholar
  31. 31.
    Tai A, Erickson B, Khater KA, Li XA (2008) Estimate of radiobiologic parameters from clinical data for biologically based treatment planning for liver irradiation. Int J Radiat Oncol Biol Phys 70(3):900–907PubMedGoogle Scholar
  32. 32.
    Park C, Papiez L, Zhang S, Story M, Timmerman RD (2008) Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys 70(3):847–852PubMedGoogle Scholar
  33. 33.
    Fowler JF (2008) Linear quadratics is alive and well: in regard to Park et al. (Int J Radiat Oncol Biol Phys 2008;70:847–852). Int J Radiat Oncol Biol Phys 72(3):957 author reply 958PubMedGoogle Scholar
  34. 34.
    Tomé WA (2009) Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy: in regard to Parks et al. (Int J Radiat Oncol Biol Phys 2008;72:1620–1621). Int J Radiat Oncol Biol Phys 73(4):1286PubMedGoogle Scholar
  35. 35.
    Guerrero M, Carlone M (2010) Mechanistic formulation of a lineal-quadratic-linear (LQL) model: split-dose experiments and exponentially decaying sources. Med Phys 37(8):4173–4181PubMedGoogle Scholar
  36. 36.
    Hanin LG, Zaider M (2010) Cell-survival probability at large doses: an alternative to the linear-quadratic model. Phys Med Biol 55:4687–4702PubMedGoogle Scholar
  37. 37.
    Kirkpatrick JP, Meyer JJ, Marks LB (2008) The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin Radiat Oncol 18:240–243PubMedGoogle Scholar
  38. 38.
    Brenner DJ (2008) The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin Radiat Oncol 18:234–239PubMedPubMedCentralGoogle Scholar
  39. 39.
    Song CW, Cho LC, Yuan J, Dusenbery KE, Griffin RJ, Levitt SH (2013) Radiobiology of stereotactic body radiation therapy/stereotactic radiosurgery and the linear-quadratic model. Int J Radiat Oncol Biol Phys 87(1):18–19PubMedGoogle Scholar
  40. 40.
    Rao SS, Oh JH, Jackson A, Deasy JO (2014) Dose escalation, not “new biology,” can account for the efficacy of stereotactic body radiation therapy with non-small cell lung cancer. In regard to Brown et al. Int J Radiat Oncol Biol Phys 89(3):692–3Google Scholar
  41. 41.
    Song CW, Kim MS, Cho LC, Dusenbery K, Sperduto PW (2014) Radiobiological basis of SBRT and SRS. Int J Clin Oncol 19(4):570–578PubMedGoogle Scholar
  42. 42.
    Sperduto PW, Song CW, Kirkpatrick JP, Glatstein E (2015) A hypothesis: indirect cell death in the radiosurgery era. Int J Radiat Oncol Biol Phys 91(1):11–13PubMedGoogle Scholar
  43. 43.
    Song CW, Lee Y-J, Griffin RJ, Park I, Koonce NA, Hui S, Kim M-S, Dusenbery KE, Sperduto PW, Cho LC (2015) Indirect tumor cell death after high dose hypo-fractionated irradiation: implications for SBRT and SRS. Int J Radiat Oncol Biol Phys 93:166–172PubMedPubMedCentralGoogle Scholar
  44. 44.
    Shuryak I, Carlson DJ, Brown JM, Brenner DJ (2015) High-dose and fractionation effects in stereotactic radiation therapy: analysis of tumor control data from 2965 patients. Radiother Oncol 115(3):327–334PubMedGoogle Scholar
  45. 45.
    Emami B, Woloschak G, Small W Jr (2015) Beyond the linear quadratic model: intraoperative radiotherapy and normal tissue tolerance. Transl Cancer Res 4(2):140–147Google Scholar
  46. 46.
    Leksell L (1971) Sterotaxic radiosurgery in trigeminal neuralgia. Acta Chir Scand 137(4):311–314PubMedGoogle Scholar
  47. 47.
    Barcia-Salorio JL, Broseta J, Hernandez G, Roldan P, Bordes V (1982) A new approach for direct CT localization in stereotaxis. Appl Neurophysiol 45(4–5):383–386PubMedGoogle Scholar
  48. 48.
    Betti OO, Derechinsky YE (1982) Irradiations stereotaxiques multifaisceaux. Neurochirurgie 28:55–56Google Scholar
  49. 49.
    Colombo F, Benedetti A, Pozza F, Avanzo RC, Marchetti C, Chierego G, Zanardo A (1985) External stereotactic irradiation by linear accelerator. Neurosurgery 16(2):154–160PubMedGoogle Scholar
  50. 50.
    Hartmann GH, Schlegel W, Sturm V, Kober B, Pastyr O, Lorenz WJ (1985) Cerebral radiation surgery using moving field irradiation at a linear accelerator facility. Int J Radiat Oncol Biol Phys 11(6):1185–1192PubMedGoogle Scholar
  51. 51.
    Lutz W, Winston KR, Maleki N (1988) A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 14(2):373–381PubMedGoogle Scholar
  52. 52.
    Friedman WA, Bova FJ (1989) The University of Florida radiosurgery system. Surg Neurol 32(5):334–342PubMedGoogle Scholar
  53. 53.
    Lax I, Blomgren H, Näslund I, Svanström R (1994) Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects. Acta Oncol 33(6):677–683PubMedGoogle Scholar
  54. 54.
    Adler JR (2009) Accuray, Inc. A neurosurgical business case. Cureus 1(9):e1.  https://doi.org/10.7759/cureus.1 CrossRefGoogle Scholar
  55. 55.
    Suit H, Wette R (1966) Radiation dose fractionation and tumor control probability. Radiat Res 29(2):267–281PubMedGoogle Scholar
  56. 56.
    Burman C, Kutcher GJ, Emami B, Goitein M (1991) Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys 21(1):123–135PubMedGoogle Scholar
  57. 57.
    Jackson A, Marks LB, Bentzen SM, Eisbruch A, Yorke ED, Ten Haken RK, Constine LS, Deasy JO (2010) The lessons of QUANTEC: recommendations for reporting and gathering data on dose-volume dependencies of treatment outcome. Int J Radiat Oncol Biol Phys 76(3 Suppl):S155–S160PubMedPubMedCentralGoogle Scholar
  58. 58.
    Deasy JO, Bentzen SM, Jackson A, Ten Haken RK, Yorke ED, Constine LS, Sharma A, Marks LB (2010) Improving normal tissue complication probability models: the need to adopt a “data-pooling” culture. Int J Radiat Oncol Biol Phys 76(3 Suppl):S151–S154PubMedPubMedCentralGoogle Scholar
  59. 59.
    Williamson JF, Das SK, Goodsitt MS, Deasy JO (2017) Introducing the medical physics dataset article. Med Phys 44(2):349–350PubMedGoogle Scholar
  60. 60.
    Grimm J, LaCouture T, Zhu Y, Xue J, Yeo I, Croce RJ (2011) Dose tolerance limits and dose volume histogram evaluation for stereotactic body radiotherapy. J Appl Clin Med Phys 12(2):267–292PubMedCentralGoogle Scholar
  61. 61.
    Timmerman RD (2008) An overview of hypofractionation and introduction to this issue of seminars in radiation oncology. Semin Radiat Oncol 18:215–222PubMedGoogle Scholar
  62. 62.
    Kim DWN, Medin PM, Timmerman RD (2017) Emphasis on repair, not just avoidance of injury, facilitates prudent stereotactic ablative radiotherapy. Semin Radiat Oncol 27(4):378–392PubMedGoogle Scholar
  63. 63.
    Benedict S, Yenice KM, Followill D, Galvin JM, Hinson W, Kavanagh B, Keall P, Lovelock M, Meeks S, Papiez L, Purdie T, Sadagopan R, Schell MC, Salter B, Schlesinger DJ, Shiu AS, Solberg T, Song DY, Stieber V, Timmerman R, Tomé WA, Verellen D, Wang L, Yin FF (2010) Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys 37(8):4078–4101PubMedGoogle Scholar
  64. 64.
    Bezhak A, Bradley J, Gaspar L, et al Seamless phase I/II study of stereotactic lung radiotherapy (SBRT) for early stage, centrally located, non-small cell lung cancer (NSCLC) in medically inoperable patients. Radiation Therapy Oncology Group 0813. Accessible at: https://www.rtog.org/ClinicalTrials/ProtocolTable.aspx. Accessed 8 Jun 2015
  65. 65.
    Videtic G, Singh A, Chang J, et al A randomized phase II study comparing 2 stereotactic body radiation therapy (SBRT) schedules for medically inoperable patients with stage I peripheral non-small cell lung cancer. Radiation Therapy Oncology Group 0915. Accessible at: https://www.rtog.org/ClinicalTrials/ProtocolTable.aspx. Accessed 1 Nov 2012
  66. 66.
    Daly ME, Chen AM, Bucci MK, El-Sayed I, Xia P, Kaplan MJ, Eisele DW (2007) Intensity-modulated radiation therapy for malignancies of the nasal cavity and paranasal sinuses. Int J Radiat Oncol Biol Phys 67(1):151–157PubMedGoogle Scholar
  67. 67.
    Lee N, Garden A, Pfister D, et al. RTOG 0615 A phase II study of concurrent chemoradiotherapy using three-dimensional conformal radiotherapy (3D-CRT) or intensity-modulated radiation therapy (IMRT) + bevacizumab (BV) for locally or regionally advanced nasopharyngeal cancerGoogle Scholar
  68. 68.
    National Cancer Institute. Common terminology criteria for adverse events v4.0. NIH publication # 09–7473. NCI, NIH, DHHS. May 29, 2009Google Scholar
  69. 69.
    Chapman JD, Nahum A (2015) Radiotherapy treatment planning, linear-quadratic radiobiology. CRC Press, Taylor & Francis Group LLC, Boca RatonGoogle Scholar
  70. 70.
    Kirkpatrick JP, van der Kogel AJ, Schultheiss TE (2010) Radiation dose-volume effects in the spinal cord. Int J Radiat Oncol Biol Phys 76(3 Suppl):S42–S49PubMedGoogle Scholar
  71. 71.
    Grimm J, Shen C, Redmond KJ, Quon H, Kleinberg LR. Avoiding necrosis in radiosurgery of non-AVM intracranial tumors. ACRO 2017Google Scholar
  72. 72.
    Grimm J, Shen CJ, Redmond KJ, Sloan L, Hazell S, Seo Y, Chan L, Nikolaidis D, Moore J, Huang E, Quon H, Bettegowda C, Lim M, Kleinberg LR. Low Risk of Symptomatic Radionecrosis Following Stereotactic Radiosurgery for Multiple Brain Metastases, ASTRO 2017Google Scholar
  73. 73.
    Inoue HK, Seto K, Nozaki A, Torikai K, Suzuki Y, Saitoh JI, Noda SE, Nakano T (2013) Three-fraction CyberKnife radiotherapy for brain metastases in critical areas: referring to the risk evaluating radiation necrosis and the surrounding brain volumes circumscribed with a single dose equivalence of 14 Gy (V14). J Radiat Res 54(4):727–735PubMedPubMedCentralGoogle Scholar
  74. 74.
    Inoue HK, Sato H, Seto KI, Torikai K, Suzuki Y, Saitoh JI, Noda SE, Nakano T (2014) Five-fraction CyberKnife radiotherapy for large brain metastases in critical areas: impact on the surrounding brain volumes circumscribed with a single dose equivalent of 14 Gy (V14) to avoid radiation necrosis. J Radiat Res 55(2):334–342PubMedGoogle Scholar
  75. 75.
    Fowler J, Yang J, Lamond J, Lanciano R, Feng J, Brady L (2010) A “Red Shell” concept of increased radiation damage hazard to normal tissues just outside the PTV target volume. Radiother Oncol 94(3):384PubMedGoogle Scholar
  76. 76.
    Yang J, Fowler JF, Lamond JP, Lanciano R, Feng J, Brady LW (2010) Red shell: defining a high-risk zone of normal tissue damage in stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 77(3):903–909PubMedGoogle Scholar
  77. 77.
    Yang J, Lamond J, Fowler J, Lanciano R, Feng J, Brady L (2013) Effect of fractionation in stereotactic body radiation therapy using the linear quadratic model. Int J Radiat Oncol Biol Phys 86(1):150–156PubMedGoogle Scholar
  78. 78.
    Lunsford LD (2009) Top 25 cited Gamma Knife articles in the Journal of Neurosurgery. J Neurosurg 111(3):1–2Google Scholar
  79. 79.
    Depp JG. Personal communication, founding president and CEO, Accuray Incorporated. Accessible via http://quantum.site.nfoservers.com/Joe/. Accessed 12 Aug 2017
  80. 80.
    Timmer FC, Hanssens PE, van Haren AE, Mulder JJ, Cremers CW, Beynon AJ, van Overbeeke JJ, Graamans K (2009) Gamma knife radiosurgery for vestibular schwannomas: results of hearing preservation in relation to the cochlear radiation dose. Laryngoscope 119(6):1076–1081PubMedGoogle Scholar
  81. 81.
    Gardner G, Robertson JH (1988) Hearing preservation in unilateral acoustic neuroma surgery. Ann Otol, Rhinol, Laryngol 97:55–66Google Scholar
  82. 82.
    Schell MJ, McHaney VA, Green AA, Kun LE, Hayes FA, Horowitz M, Meyer WH (1989) Hearing loss in children and young adults receiving cisplatin with or without prior cranial irradiation. J Clin Oncol 7(6):754–760PubMedGoogle Scholar
  83. 83.
    Ross CJ, Katzov-Eckert H, Dubé MP, Brooks B, Rassekh SR, Barhdadi A, Feroz-Zada Y, Visscher H, Brown AM, Rieder MJ, Rogers PC, Phillips MS, Carleton BC, Hayden MR, CPNDS Consortium (2009) Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat Genet 41(12):1345–1349Google Scholar
  84. 84.
    Brock PR, Maibach R, Childs M, Rajput K, Roebuck D, Sullivan MJ, Laithier V, Ronghe M, Dall’Igna P, Hiyama E, Brichard B, Skeen J, Mateos ME, Capra M, Rangaswami AA, Ansari M, Rechnitzer C, Veal GJ, Covezzoli A, Brugières L, Perilongo G, Czauderna P, Morland B, Neuwelt EA (2018) Sodium thiosulfate for protection from cisplatin-induced hearing loss. N Engl J Med 378(25):2376–2385PubMedGoogle Scholar
  85. 85.
    Ishikawa E, Sugimoto H, Hatano M, Nakanishi Y, Tsuji A, Endo K, Kondo S, Wakisaka N, Murono S, Ito M, Yoshizaki T (2015) Protective effects of sodium thiosulfate for cisplatin-mediated ototoxicity in patients with head and neck cancer. Acta Otolaryngol 135(9):919–924PubMedGoogle Scholar
  86. 86.
    Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, Dicker AP (2010) Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys 76(3 Suppl):S20–S27PubMedPubMedCentralGoogle Scholar
  87. 87.
    Rubin P (1967) Clinical oncology for medical students and physicians a multidisciplinary approach. Rochester, American Cancer SocietyGoogle Scholar
  88. 88.
    Jackson A, Yorke E, Rosenzweig K (2006) The atlas of complication incidence: a proposal for a new standard for reporting the results of radiotherapy protocols. Semin Radiat Oncol 16:260–268PubMedGoogle Scholar
  89. 89.
    Kimsey F, McKay J, Gefter J, Milano MT, Moiseenko V, Grimm J, Berg R (2016) Dose-response model for chest wall tolerance of stereotactic body radiation therapy. Semin Radiat Oncol 26(2):129–134PubMedGoogle Scholar
  90. 90.
    Hindo WA, DeTrana FA 3rd, Lee MS, Hendrickson FR (1970) Large dose increment irradiation in treatment of cerebral metastases. Cancer 26:138–141PubMedGoogle Scholar
  91. 91.
    Bijl HP, van Luijk P, Coppes RP, Schippers JM, Konings AW, van Der Kogel AJ (2005) Regional differences in radiosensitivity across the rat cervical spinal cord. Int J Radiat Oncol Biol Phys 61(2):543–551PubMedGoogle Scholar
  92. 92.
    Philippens ME, Pop LA, Visser AG, Peeters WJ, van der Kogel AJ (2009) Bath and shower effect in spinal cord: the effect of time interval. Int J Radiat Oncol Biol Phys 73(2):514–522PubMedGoogle Scholar
  93. 93.
    van Luijk P, Faber H, Schippers JM, Brandenburg S, Langendijk JA, Meertens H, Coppes RP (2009) Bath and shower effects in the rat parotid gland explain increased relative risk of parotid gland dysfunction after intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 74(4):1002–1005PubMedGoogle Scholar
  94. 94.
    Xue J, Goldman HW, Grimm J, LaCouture T, Chen Y, Hughes L, Yorke E (2012) Dose-volume effects on brainstem dose tolerance in radiosurgery. J Neurosurg 117(Suppl):189–196PubMedGoogle Scholar
  95. 95.
    Wang JZ, Huang Z, Lo SS, Yuh WT, Mayr NA (2010) A generalized linear-quadratic model for radiosurgery, stereotactic body radiation therapy, and high-dose rate brachytherapy. Sci Transl Med 2(39):39ra48PubMedGoogle Scholar
  96. 96.
    Mayo C, Martel MK, Marks LB, Flickinger J, Nam J, Kirkpatrick J (2010) Radiation dose-volume effects of optic nerves and chiasm. Int J Radiat Oncol Biol Phys 76(3 Suppl):S28–S35PubMedGoogle Scholar
  97. 97.
    Mayo C, Yorke E, Merchant TE (2010) Radiation associated brainstem injury. Int J Radiat Oncol Biol Phys 76(3 Suppl):S36–S41PubMedPubMedCentralGoogle Scholar
  98. 98.
    Barendsen GW (1982) Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys 8(11):1981–1997PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jinyu Xue
    • 1
  • Bahman Emami
    • 2
  • Jimm Grimm
    • 3
  • Gregory J. Kubicek
    • 4
  • Sucha O. Asbell
    • 4
  • Rachelle Lanciano
    • 5
  • James S. Welsh
    • 2
  • Luke Peng
    • 3
  • Harry Quon
    • 3
  • Wolfram Laub
    • 3
  • Chengcheng Gui
    • 3
  • Nicholas Spoleti
    • 3
  • Indra J. Das
    • 1
  • Howard Warren Goldman
    • 6
  • Kristin J. Redmond
    • 3
  • Lawrence R. Kleinberg
    • 3
  • Luther W. Brady
    • 5
  1. 1.Department of Radiation OncologyNYU Langone Medical CenterNew YorkUSA
  2. 2.Department of Radiation OncologyLoyola University Medical CenterMaywoodUSA
  3. 3.Department Radiation Oncology and Mol. Rad. SciencesJohns Hopkins University HospitalBaltimoreUSA
  4. 4.Department of Radiation OncologyMD Anderson Cancer Center at CooperCamdenUSA
  5. 5.Philadelphia CyberKnife, Crozer-Keystone Health SystemHavertownUSA
  6. 6.Department of Neurological SurgeryCooper University HospitalCamdenUSA

Personalised recommendations