Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Transfer of grain softness from 5U-5A wheat-Aegilops triuncialis substitution line to bread wheat through induced homeologous pairing

Abstract

Bread wheat sustains genes for grain softness on “Ha” locus of short arm of 5D chromosome. Pina-D1 and Pinb-D1 alleles of “Ha” locus together are responsible for soft grain texture of wheat. The wheat cultivar WL711 had wild type Pinb-D1a and mutated Pina allele, imparting hard kernel texture. A 5U-5A substitution line of Aegilops triuncialis had extra soft grains. Efforts were made to transfer puroindolines from Aegilops triuncialis 5U as 5U-5A substitution line BTC17 to its homeologous chromosome 5A of bread wheat. A total of 367 5U-5A substitution recombinants developed through induced homeologous pairing by ph1b deletion of Ph1 locus were screened for the presence of Pina and Pinb. Only 23 lines were found to have both Pina and Pinb. Grain hardness index of recombinants with functional puroindolines was reduced from 6 to 67%. Deletion mapping of wheat 5A chromosome specific SSR markers revealed the maintenance of synteny in 5U and 5A homeologous chromosomes and puroindolines were found to be translocated at the telomeric end of 5A short arm. Translocation of puroindolines from 5U was confirmed by sequencing of Pina and Pinb genes. The Pina nucleotide sequence was found 100% similar to Aegilops markgrafii (CC). Puroindoline proteins extracted from the selected softer lines exhibited significant antimicrobial activity against gram positive and gram negative bacteria. Chromosome 5U puroindolines transferred to 5A may be pyramided with 5D of soft wheat to develop extra soft varieties for superior biscuit making quality.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

SKCS:

Single Kernel Characterization System

SMP:

Skimmed milk powder

ORF:

Open reading frame

MTCC:

Microbial type cell culture

References

  1. Alfred RL, Palombo EA, Panozzo JF, Bhave M (2014) The co-operative interaction of puroindolines in wheat grain texture may involve the hydrophobic domain. J Cereal Sci 60:323–330

  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

  3. Barak S, Mudgil D, Khatkar B (2014) Effect of flour particle size and damaged starch on the quality of cookies. J Food Sci Technol 51:1342–1348

  4. Bauer A, Kirby W, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

  5. Bhave M, Morris CF (2008) Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Mol Biol 66:205–219

  6. Bonomi F, Iametti S, Mamone G, Ferranti P (2013) The performing protein: beyond wheat proteomics? Cereal Chem 90:358–366

  7. Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256:1604–1607

  8. Chen F, He Z, Xia X, Xia L, Zhang X, Lillemo M, Morris C (2006) Molecular and biochemical characterization of puroindoline a and b alleles in Chinese landraces and historical cultivars. Theor Appl Genet 112:400–409

  9. Cuesta S, Guzmán C, Alvarez JB (2013) Allelic diversity and molecular characterization of puroindoline genes in five diploid species of the Aegilops genus. J Exp Bot 64:5133–5143

  10. Dubreil L, Méliande S, Chiron H, Compoint JP, Quillien L, Branlard G, Marion D (1998) Effect of puroindolines on the breadmaking properties of wheat flour. Cereal Chem 75:222–229

  11. Feldman M, Levy A (2005) Allopolyploidy–a shaping force in the evolution of wheat genomes. Cytogenet Genome Res 109:250–258

  12. Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (eds) The proteomics protocols handbook. Humana Press, pp 571–607

  13. Gautier MF, Aleman ME, Guirao A, Marion D, Joudrier P (1994) Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Mol Biol 25:43–57

  14. Giroux M, Morris C (1997) A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theor Appl Genet 95:857–864

  15. Greenwell P (1986) A starch granule protein associated with endosperm softness in wheat. Cereal Chem 63:379–380

  16. Haney EF, Petersen AP, Lau CK, Jing W, Storey DG, Vogel HJ (2013) Mechanism of action of puroindoline derived tryptophan-rich antimicrobial peptides. Biochim Biophys Acta (BBA) Biomembr 1828:1802–1813

  17. Heinze K, Kiszonas A, Murray J, Morris C, Lullien-Pellerin V (2016) Puroindoline genes introduced into durum wheat reduce milling energy and change milling behavior similar to soft common wheats. J Cereal Sci 71:183–189

  18. IWGSC (2018) Shifting the limits in wheat research and breeding through a fully annotated and anchored reference genome sequence. Science 361:1–13

  19. Jazaeri S, Bock JE, Bagagli MP, Iametti S, Bonomi F, Seetharaman K (2015) Structural modifications of gluten proteins in strong and weak wheat dough during mixing. Cereal Chem 92:105–113

  20. Jing W, Demcoe AR, Vogel HJ (2003) Conformation of a bactericidal domain of puroindoline a: structure and mechanism of action of a 13-residue antimicrobial peptide. J Bacteriol 185:4938–4947

  21. Krishnamurthy K, Balconi C, Sherwood JE, Giroux MJ (2001) Wheat puroindolines enhance fungal disease resistance in transgenic rice. Mol Plant Microbe Interact 14:1255–1260

  22. Li W, Huang L, Gill BS (2008) Recurrent deletions of puroindoline genes at the grain hardness locus in four independent lineages of polyploid wheat. Plant physiol 146:200–212

  23. Massa AN, Morris CF (2006) Molecular evolution of the puroindoline-a, puroindoline-b, and grain softness protein-1 genes in the tribe Triticeae. J Mol Evol 63:526–536

  24. McFadden E, Sears E (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37:107–116

  25. Miller BS, Pomeranz Y, Afework S (1984) Hardness (texture) of hard red winter wheat grown in a soft wheat area and of soft red winter wheat grown in a hard wheat area. Cereal Chem 61:201–203

  26. Morris C, Rose S (1996) Wheat. In: Henry RJ, Kettlewell PS (eds) Cereal grain quality. Springer, Dordrecht, pp 3–54

  27. Morris CF, Simeone MC, King G, Lafiandra D (2011) Transfer of soft kernel texture from Triticum aestivum to durum wheat, Triticum turgidum ssp. durum. Crop Sci 51:114–122

  28. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

  29. Niknejad A, Webster D, Bhave M (2016) Production of bioactive wheat puroindoline proteins in Nicotiana benthamiana using a virus-based transient expression system. Protein Expr Purif 125:43–52

  30. Ogbonnaya FC, Abdalla O, Mujeeb-Kazi A, Kazi AG, Xu SS, Gosman N, Lagudah ES (2013) Synthetic hexaploids: harnessing species of the primary gene pool for wheat improvement. Plant Breed Rev 37:35–122

  31. Pomeranz Y, Peterson CJ, Mattern PJ (1985) Hardness of winter wheats grown under widely different climatic conditions. Cereal Chem 62:463467

  32. Quayson ET, Marti A, Morris CF, Marengo M, Bonomi F, Seetharaman K, Iametti S (2018) Structural consequences of the interaction of puroindolines with gluten proteins. Food Chem 253:255–261

  33. Rahman S, Jolly CJ, Skerritt JH, Wallosheck A (1994) Cloning of a wheat 15-kDa grain softness protein (GSP) GSP is a mixture of puroindoline-like polypeptides. Eur J Biochem 223:917–925

  34. Ram S, Boyko E, Giroux MJ, Gill BS (2002) Null mutation in puroindoline a is prevalent in Indian wheats: puroindoline genes are located in the distal part of 5DS. J Plant Biochem Biotechnol 11:79–83

  35. Sheikh I, Sharma P, Verma SK, Kumar S, Malik S, Mathpal P, Kumar U et al (2015) Characterization of interspecific hybrids of Triticum aestivum × Aegilops sp. without 5B chromosome for induced homoeologous pairing. J Plant Biochem Biotechnol 25:117–120

  36. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

  37. Whitely P (1970) Development of high protein biscuits from green gram flour manufactures. Applied Science Publisher Ltd., London

  38. Wilkinson M, Wan Y, Tosi P, Leverington M, Snape J, Mitchell RA, Shewry PR (2008) Identification and genetic mapping of variant forms of puroindoline b expressed in developing wheat grain. J Cereal Sci 48:722–728

  39. Zhang W, Cao Y, Zhang M, Zhu X, Ren S, Long Y, Gyawali Y et al (2017) Meiotic homoeologous recombination-based alien gene introgression in the genomics era of wheat. Crop Sci 57:1189–1198

Download references

Acknowledgements

The financial support provided by Department of Biotechnology, Government of India (BT/PR10886/AGII/106/934/2014) is duly acknowledged. The authors also acknowledge Akal College of Agriculture for providing necessary infrastructure and research facilities for carrying out this work.

Author information

Correspondence to Pritesh Vyas or H. S. Dhaliwal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1891 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharma, Y., Sheikh, I., Sharma, A. et al. Transfer of grain softness from 5U-5A wheat-Aegilops triuncialis substitution line to bread wheat through induced homeologous pairing. J. Plant Biochem. Biotechnol. (2020). https://doi.org/10.1007/s13562-020-00554-z

Download citation

Keywords

  • Wheat
  • Aegilops triuncialis
  • Pina
  • Pinb
  • Soft grains
  • Induced homeologous pairing