Advertisement

Sneak peek of Hypericum perforatum L.: phytochemistry, phytochemical efficacy and biotechnological interventions

  • Mohammad Yaseen MirEmail author
  • Saima Hamid
  • Azra N. Kamili
  • Qazi P. Hassan
Review Article

Abstract

The phytochemistry of Hypericum perforatum (St. John’s wort) has been elaborated extensively owing to its immense application in medicinal chemistry. Illustrated pharmacological activities like antidepressant, antiviral, and antibacterial effects demonstrated its substantiation for numerous of the conventional purposes reported for St John’s wort. St. John’s wort is herbal remedy extensively used in mild to moderate depression. Most of pharmacological activities were assigned to presence of photosensitive naphthodianthrone; hypericin and other allied flavonoid constituents. Escalating demands of hyperforin as antidepressant added more lure to H. perforatum L. The crude extracts of H. perforatum containing phloroglucinols were used for free radical scavenging and against DNA damage. To meet increasing demands of this drug, researchers need to tailor out the biosynthetic pathways to improve secondary metabolite. This necessitated advancement in biotechnological intervention to improve phytochemical potential of this growing herb. This review will brief out ecology, chemistry and phytochemical efficacy with respective phytoconstituents. Further, review will emphasize biotechnological interventions including both conventional and modern contrivances that have been implemented to augment the glory of this species.

Keywords

Phytochemistry Phytochemical efficacy Naphthodianthrones Phloroglucinols 

Abbreviations

DMAPP

Dimethylallyldiphosphate

GPP

Geranyldiphosphate

PDT

Photodynamic therapy

CHS

Chalcone synthase

PAL

Phenylalanine-ammonia

MAO

Monoamine oxidase

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. Abdel-Salam OME (2005) Anti-inflammatory, antinociceptive, and gastric effects of Hypericum perforatum in rats. Sci World J 5:586–595CrossRefGoogle Scholar
  2. Adam P, Arigoni D, Bacher A et al (2002) Biosynthesis of hyperforin in Hypericum perforatum. J Med Chem 45:4786–4793CrossRefPubMedGoogle Scholar
  3. Agostinis P, Berg K, Cengel KA et al (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alan AR, Susan JM, Praveen KS (2015) Evaluation of ploidy variations in Hypericum perforatum L. (St. John’s wort) germplasm from seeds, in vitro germplasm collection, and regenerants from floral cultures). In: Vitro cellular and developmental biology plant.  https://doi.org/10.1007/s11627-015-9708-7
  5. Arndt S, Haag SF, Kleemann A (2013) Radical protection in the visible and infrared by a hyperforin-rich cream—in vivo versus ex vivo methods. Exp Dermatol 22:354–356CrossRefPubMedGoogle Scholar
  6. Austin MB, Noel AJP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ayan AK, Çirak C, Kevseroğlu K, Sökmen A (2005) Effects of explants types and different concentrations of sucrose and phytoharmones on plant regeneration and hypericin content in Hypericum perforatum L. Turk J Agric For 29:197–204Google Scholar
  8. Baenas N, Garcia-Viguera C, Moreno DA (2014) Elicitation: a tool for enriching the bioactive composition of foods. Molecules 19:13541–13563CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bagdonaite E, Martonfi P, Repcak M et al (2012) Variation in concentrations of major bioactive compounds in Hypericum perforatum L. from Lithuania. Ind Crop Prod 35:302–308CrossRefGoogle Scholar
  10. Bais HP, Vepachedu R, Lawrence CB et al (2003) Molecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St. John’s wort (Hypericum perforatum L.). J Biol Chem 278:32413–32422CrossRefPubMedGoogle Scholar
  11. Banerjee A, Bandyopadhyay S, Raychaudhuri SS (2012) In vitro regeneration of Hypericum perforatum L. using thidiazuron and analysis of genetic stability of regenerants. Indian J Biotechnol 11:92–98Google Scholar
  12. Barber MS, McConnell VS, DeCaux BS (2000) Antimicrobial intermediates of the general phenylpropanoid and lignin specific pathways. Phytochemistry 54:53–56CrossRefPubMedGoogle Scholar
  13. Barnes J, Anderson LA, Phillipson JD (2001) St. John’s wort (Hypericum perforatum L.). A review of its chemistry, pharmacology, and clinical properties. J Pharm Pharmacol 53:583–600CrossRefPubMedGoogle Scholar
  14. Beerhues L (2006) Molecules of interest-hyperforin. Phytochemistry 67:2201–2207CrossRefPubMedGoogle Scholar
  15. Belkheir AK, Gaid M, Liu B, Hänsch R, Beerhues L (2016) Benzophenone synthase and chalcone synthase accumulate in the mesophyll of Hypericum perforatum leaves at different developmental stages. Front Plant Sci.  https://doi.org/10.3389/fpls.2016.00921 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Benedi J, Arroyo R, Romero C et al (2004) Antioxidant properties and protective effects of a standardized extract of Hypericum perforatum on hydrogen peroxide-induced oxidative damage in PC12 cells. Life 75:1263–1276CrossRefGoogle Scholar
  17. Borchardt JR, Wyse DL, Sheaffer CC et al (2008) Antimicrobial activity of native and naturalized plants of Minnesota and Wisconsin. J Med Plants Res 2:98–110Google Scholar
  18. Boubakir Z, Beuerle T, Liu B et al (2005) The first prenylation step in hyperforin biosynthesis. Phytochemistry 66:51–57CrossRefPubMedGoogle Scholar
  19. Briese D, Campbell M, Faithfull I (2000) Best practice management guide for environmental weeds. Weeds CRC. https://doi.org/www.waite.adelaide.edu.au/CRCWMS
  20. Brugger GA, Lamotte O, Vandelle E et al (2006) Early signalling events induced by elicitors of plant defenses. Mol Plant Microbe Interact 19(7):711–724CrossRefGoogle Scholar
  21. Bruni R, Sacchetti G (2009) Factors affecting polyphenol biosynthesis in wild and field grown St. John’sWort (Hypericum perforatum L. Hypericaceae/Guttiferae). Molecules 14:682–725CrossRefPubMedPubMedCentralGoogle Scholar
  22. Brutovska R, Cellarova E, Schubert I (2000) Cytogenetic characterization of three Hypericum species by in situ hybridization. Theor Appl Genet 101:46–50CrossRefGoogle Scholar
  23. Buckley YM, Briese DT, Rees M (2003) Demography and management of the invasive plant species Hypericum perforatum L. Using multi-level mixed-effects models for characterizing growth, survival, and fecundity in a long-term data set. J Appl Ecol 40:481–493CrossRefGoogle Scholar
  24. Buytaert E, Dewaele M, Agostinis P (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta 1776:86–107PubMedGoogle Scholar
  25. Campbell MH, May CE, Southwell IA et al (1997) Variation in Hypericum perforatum L. (St John’s wort) in New South Wales. Plant Prot Q 12:64–66Google Scholar
  26. Cellarova E, Kimakova K, Brutovska R (1992) Multiple shoot formation and phenotypic changes of R0 regenerants in Hypericum perforatum L. Acta Biotechnol 12:445–452CrossRefGoogle Scholar
  27. Cervo L, Rozio M, Ekalle-Soppo CB et al (2002) Role of hyperforin in the antidepressant-like activity of Hypericum perforatum extracts. Psychopharmacology 164:423–428CrossRefPubMedGoogle Scholar
  28. Charchoglyan A, Abrahamyan A, Fujii I (2007) Differential accumulation of hyperforin and secohyperforin in Hypericum perforatum tissue cultures. Phytochemistry 68:2670–2677CrossRefPubMedGoogle Scholar
  29. Chavez ML, Chavez PI (1997) Saint John’s wort. Hosp Pharm 32(12):1621–1632Google Scholar
  30. Conceição L, Ferrares F, Tavares R et al (2006) Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation. Phytochem 67:149–155CrossRefGoogle Scholar
  31. Coste A, Vlase L, Halmagyi A, Deliu C, Coldea G (2011) Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell Tiss Organ Cult 106:279–288CrossRefGoogle Scholar
  32. Crockett SL, Schaneberg L, Khan IA (2005) Phytochemical profiling of new and oldworld Hypericum (St. John’s Wort) species. Phytochem Anal 16:479–485CrossRefPubMedGoogle Scholar
  33. Cui XH, Chakrabarty D, Lee EJ, Paek KY (2010) Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor. Bioresour Technol 101:4708–4716CrossRefPubMedGoogle Scholar
  34. Dadgar S, Hagens O, Dadgar SR (2006) Structural model of the OPA1 GTPase domain may explain the molecular consequences of a novel mutation in a family with autosomal dominant optic atrophy. Exp Eye Res 83(3):702–706CrossRefPubMedGoogle Scholar
  35. Dall AR, Ferraz A, Bernardi AP et al (2005) Bioassay-guided isolation of antimicrobial benzopyrans and phloroglucinol derivatives from Hypericum species. Phytother Res 19:291–293CrossRefGoogle Scholar
  36. DerMarderosian A, Beutler J (2002) The natural review of products, vol 2. Facts and Comparisons, St Louis, pp 512–513Google Scholar
  37. Durango D, Pulgarin N, Echeverri F et al (2013) Effect of salicylic acid and structurally related compounds in the accumulation of phytoalexins in cotyledons of common bean (Phaseolus vulgaris L.) cultivars. Molecules 18:10609–10628CrossRefPubMedPubMedCentralGoogle Scholar
  38. English DS, Das K, Ashby KD et al (1997) Excited-state photophysics of hypericin and its hexamethoxy analog: intramolecular proton transfer as a nonradiative process in hypericin. J Am Chem Soc 119:11585–11590CrossRefGoogle Scholar
  39. Fava M, Alpert J, Nierenberg AA, Mischoulon D, Otto MW, Zajecka J, Murck H, Rosenbaum JF (2005) A double-blind, randomized trial of St John’s Wort, fluoxetine, and placebo in major depressive disorder. J Clin Psychopharmacol 25(5):441–447CrossRefPubMedGoogle Scholar
  40. Ferrari F, Pasqua G, Monacelli B et al (2005) Xanthones from calli of Hypericum perforatum subsp. perforatum. Nat Prod Res 19:171–176CrossRefPubMedGoogle Scholar
  41. Ferrer J, Jez JM, Bowman ME, Dixon RA, Noel JP (1999) Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Biol 6:775–784.  https://doi.org/10.1038/11553 CrossRefPubMedGoogle Scholar
  42. Ferrer J, Austin M, Stewart CJ, Noel J (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370CrossRefPubMedGoogle Scholar
  43. Filippini R, Piovan A, Borsarini A et al (2010) Study of dynamic accumulation of secondary metabolites in three subspecies of Hypericum perforatum. Fitoterapia 81:115–119CrossRefPubMedGoogle Scholar
  44. Franklin G, Dias ACP (2006) Organogenesis and embryogenesis in several Hypericum perforatum genotypes. Vitro Cell Dev Biol Plant 42:324–330CrossRefGoogle Scholar
  45. Franklin G, Dias ACP (2011) Chlorogenic acid participates in the regulation of shoot, root and root hair development in Hypericum perforatum. Plant Physiol Biochem 49:835–842CrossRefPubMedGoogle Scholar
  46. Franklin G, Oliveira M, Dias ACP (2007) Production of transgenic Hypericum perforatum plants via particle bombardment-mediated transformation of novel organogenic cell suspension cultures. Plant Sci 172:1193–1203CrossRefGoogle Scholar
  47. Gadzovska S, Maury S, Delaunay A et al (2007) Jasmonic acid elicitation of Hypericum perforatum L. cell suspensions and effects on the production of phenylpropanoids and naphtodianthrones. Plant Cell, Tissue Organ Cult 89:1–13CrossRefGoogle Scholar
  48. Gadzovska-Simic S, Tusevski O, Antevski S et al (2012) Secondary metabolite production in Hypericum perforatum L. cell suspensions upon elicitation with fungal mycelia from Aspergillus flavus. Arch Biol Sci 64:113–121CrossRefGoogle Scholar
  49. Gadzovska-Simic S, Tusevski O, Delaunay Maury S (2014) Effects of polysaccharide elicitors on secondary metabolite production and antioxidant response in Hypericum perforatum L. shoot cultures. Sci World J.  https://doi.org/10.1155/2014/609649 CrossRefGoogle Scholar
  50. Gai F, Fehr MJ, Petrich JW (1994) Observation of excited-state tautomerization in the antiviral agent hypericin and identification of its fluorescent species. J Phys Chem 98:5184–5195Google Scholar
  51. Gaid M, Haas P, Beuerle T, Scholl S, Beerhues L (2016) Hyperforin production in Hypericum perforatum root cultures. J Biotechnol 222:47–55CrossRefPubMedGoogle Scholar
  52. Goel MK, Kukreja AK, Bisht NS (2008) In vitro manipulations in St. John’swort (Hypericum perforatum L.) for incessant and scale up micropropagation using adventitious roots in liquid medium and assessment of clonal fidelity using RAPD analysis. Plant Cell, Tissue Organ Cult 96:1–9CrossRefGoogle Scholar
  53. Grandjenette C, Schnekenburger M, Morceau F et al (2015) Dual induction of mitochondrial apoptosis and senescence in chronic myelogenous leukemia by myrtucommulone A. Anticancer Agents Med Chem 15(3):363–373CrossRefPubMedGoogle Scholar
  54. Greeson JF, Sanford B, Monti DA (2001) St. John’s wort (Hypericum perforatum): are view of the current pharmacological, toxicological, and clinical literature. Psychopharmacology 153:402–414CrossRefPubMedGoogle Scholar
  55. Griffith TN, Varela-Nallar L, Dinamarca MC (2010) Neurobiological effects of Hyperforin and its potential in Alzheimer’s disease therapy. Curr Med Chem 17:391–406CrossRefPubMedGoogle Scholar
  56. Hammer KD, Hillwig ML, Neighbors JD (2008) Pseudohypericin is necessary for the light activated inhibition of prostaglandin E2 pathways by a 4 component system mimicking an Hypericum perforatum fraction. Phytochemistry 69(12):2354–2362CrossRefPubMedPubMedCentralGoogle Scholar
  57. Hammer KD, Birt DF (2014) Evidence for contributions of interactions of constituents to the anti-inflammatory activity of Hypericum perforatum. Crit Rev Food Sci Nutr 54:781–789.  https://doi.org/10.1080/10408398.2011.607519 CrossRefPubMedGoogle Scholar
  58. Handerson T, Pawelek JM (2003) Beta-1,6-branched oligosaccharides and coarse vesicles: a common, pervasive phenotype in melanoma and other human cancers. Cancer Res 63:5363–5369PubMedGoogle Scholar
  59. Handerson T, Berger A, Harigopol M et al (2007) Melanophages reside in hypermelanotic, aberrantly glycosylated tumor areas and predict improved outcome in primary cutaneous malignant melanoma. J Cutan Pathol 34:679–686CrossRefPubMedGoogle Scholar
  60. Hersey P, Zhang XD (2008) Adaptation to ER stress as a driver of malignancy and resistance to therapy in human melanoma. Pigment Cell Melanoma Res 21:358–367CrossRefPubMedGoogle Scholar
  61. Holscher D, Shroff R, Knop K et al (2009) Matrix-free UV-laser desorption/ionization (LDI) mass spectrometric imaging at the single-cell level: distribution of secondary metabolites in Arabidopsis thaliana and Hypericum species. Plant J 60:907–918CrossRefPubMedGoogle Scholar
  62. Huang LF, Wang ZH, Chen SL (2014) Hypericin: chemical synthesis and biosynthesis. Chin J Nat Med 12:81–88PubMedGoogle Scholar
  63. Jaaola L, Hohtola A (2010) Effect of latitude on flavonoid biosynthesis in plants. Plant Cell Environ 33:1239–1247Google Scholar
  64. Jakubowska M, Michalczyk W, Pyka DJ et al (2013) Nitrosylhemoglobin in photodynamically stressed human tumors growing in nude mice. Nitric Oxide 35:79–88CrossRefPubMedGoogle Scholar
  65. Jang MH, Lee TH, Shin MC, Bahn GH, Kim JW, Shin DH, Kim CJ (2002) Protective effect of Hypericum perforatum L. (St. John's wort) against hydrogen peroxide-induced apoptosis on human neuroblastoma cells. Neurosci Lett 329(2):177–180CrossRefPubMedGoogle Scholar
  66. Jez JM, Noel JP (2002) Reaction mechanism of chalcone isomerase: pH dependence, diffusion control, and product binding differences. J Biol Chem 277:1361–1369CrossRefPubMedGoogle Scholar
  67. Jez JM, Bowman ME, Dixon RA, Noel JP (2000) Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat Struct Biol 7:786–791CrossRefPubMedGoogle Scholar
  68. Jung HW, Tschaplinski TJ, Wang L et al (2009) Priming in systemic plant immunity. Science 324:89–91CrossRefPubMedGoogle Scholar
  69. Kalyanaraman B (2013) Teaching the basics of redox biology to medical and graduate students: oxidants, antioxidants and disease mechanisms. Redox Biol 1:244–257CrossRefPubMedPubMedCentralGoogle Scholar
  70. Karioti A, Bilia AR (2010) Hypericins as potential leads for new therapeutics. Int J Mol Sci 11:562–594CrossRefPubMedPubMedCentralGoogle Scholar
  71. Karppinen K, Hohtola A (2008) Molecular cloning and tissue-sepcific expression of two cDNAs encoding polyketide synthases from Hypericum perforatum. J Plant Physiol 165:1079–1086CrossRefPubMedGoogle Scholar
  72. Kessel M, Martinet W, Rubio N et al (2011) Autophagy pathways activated in response to PDT contribute to cell resistance against ROS damage. J Cell Mol Med 15:1402–1414CrossRefGoogle Scholar
  73. Kirakosyan A, Hayashi H, Inoue K et al (2000) Stimulation of the production of hypericins by mannan in Hypericum perforatum shoot cultures. Phytochemistry 53:345–348CrossRefPubMedGoogle Scholar
  74. Klingauf P, Beuerle T, Mellenthin A et al (2005) Biosynthesis of the hyperforin skeleton in Hypericum calycinum cell cultures. Phytochemistry 66:139–145CrossRefPubMedGoogle Scholar
  75. Koch MA, Scheriau C, Betzin A et al (2013) Evolution of cryptic gene pools in Hypericum perforatum: the influence of reproductive system and gene flow. Ann Bot 111:1083–1094CrossRefPubMedPubMedCentralGoogle Scholar
  76. Kosuth J, Katkovcinova Z, Olexova P et al (2007) Expression of the hyp-1 gene in early stages of development of Hypericum perforatum L. Plant Cell Rep 26:211–217CrossRefPubMedGoogle Scholar
  77. Kwiecień I, Smolin J, Beerhues L, Ekiert H (2018) The impact of media composition on production of flavonoids in agitated shoot cultures of the three Hypericum perforatum L. cultivars ‘Elixir’, ‘Helos’, and ‘Topas’. Vitro Cell Dev Biol: Plant. 54:332–340.  https://doi.org/10.1007/s11627-018-9900-7 CrossRefPubMedGoogle Scholar
  78. Lavie G, Mazur Y, Lavie D et al (1995) The chemical and biological properties of hypericin—a compound with a broad spectrum of biological activities. Med Res Rev 15:111–119CrossRefPubMedGoogle Scholar
  79. Lazova R, Pawelek JM (2009) Why do melanomas get so dark? Exp Dermatol 18:934–938CrossRefPubMedGoogle Scholar
  80. Lazova R, Klump V, Pawelek J (2010) Autophagy in cutaneous malignant melanoma. J Cutan Pathol 37:256–268CrossRefPubMedGoogle Scholar
  81. Liu B, Paul FH, Schmidt W, Beerhues L (2003) Benzophenone synthase and chalcone synthase from Hypericum androsaemum cell cultures: cDNA cloning, functional expression, and site-directed mutagenesis of two polyketide synthases. Plant J 34:847–855CrossRefPubMedGoogle Scholar
  82. Males Z, Brantner AH, Sovic K et al (2006) Comparative phytochemical and antimicrobial investigations of Hypericum perforatum L. subsp. perforatum and H. perforatum subsp. angustifolium (DC.) Gaudin. Acta Pharm 56:359–367PubMedGoogle Scholar
  83. Mateja G, Vekoslava S, Samo K (2010) Flavonoid, tannin and hypericin concentrations in the leaves of St. John’s wort (Hypericum perforatum L.) are affected by UV-B radiation levels. Food Chem 122:471–474CrossRefGoogle Scholar
  84. Maury W, Price JP, Brindley MA (2009) Identification of light-independent inhibition of human immu-nodeficiency virus-1 infection through bioguided fractionation of Hypericum perforatum. Virol J 6:101CrossRefPubMedPubMedCentralGoogle Scholar
  85. Menegazzi M, Paola R, Mazzon E et al (2006) Hypericum perforatum attenuates the development of carrageenan-induced lung injury in mice. Free Radic Biol Med 40(5):740–753CrossRefPubMedGoogle Scholar
  86. Merhi F, Tang R, Piedfer M et al (2011) Hyperforin inhibits Akt1 kinase activity and promotes caspase-mediated apoptosis involving Bad and Noxa activation in human myeloid tumor cells. PLoS ONE 6:e25963CrossRefPubMedPubMedCentralGoogle Scholar
  87. Michalska K, Fernades H, Sikorski M et al (2010) Crystal structure of Hyp-1, a St. John’s wort protein implicated in the biosynthesis of hypericin. J Struct Biol 169:161–171CrossRefPubMedGoogle Scholar
  88. Mir MY, Kamili AN, Hassan QP, Rafi S, Parray JA, Jan S (2018) In vitro regeneration and free radical scavenging assay of Hypericum perforatum L. Acad Sci Lett, Natl.  https://doi.org/10.1007/s40009-018-0699-x CrossRefGoogle Scholar
  89. Miroslav S, Odeta C, Daniel K et al (2016) Differentially expressed genes in hypericin-containing Hypericum perforatum leaf tissues as revealed by De Novo Assembly of RNA-Seq. Plant Mol Biol Rep.  https://doi.org/10.1007/s11105-016-0982-2 CrossRefGoogle Scholar
  90. Murch S, Saxena PK (2002) Melatonin: a potential regulator of plant growth and development? In vitro Cell Dev Biol Plant 38:531–536CrossRefGoogle Scholar
  91. Murch SJ, Krishna RS, Saxena PK (2000) Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John’s wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Rep 19:698–704CrossRefGoogle Scholar
  92. Niranjana HM, Kim YS, Park SY et al (2014) Hypericins: biotechnological production from cell and organ cultures. Appl Microbiol Biotechnol 98:9187–9198CrossRefGoogle Scholar
  93. Nurk NM, Crockett SL (2011) Morphological and phytochemical diversity among Hypericum Species of the mediterranean basin. Med Aromat Plant Sci Biotechnol 5:14–28PubMedPubMedCentralGoogle Scholar
  94. Palmer DC, Keller WA (2011) Plant regeneration from petal explants of Hypericum perforatum L. Plant Cell Tissue Org Cult 105:129–134CrossRefGoogle Scholar
  95. Patocka J (2003) The chemistry, pharmacology and toxicology of the biologically active constituents of the herb Hypericum perforatum L. J Appl Biomed 1:61–70Google Scholar
  96. Pasqua G, Avato P, Monacelli B, Santamaria AR, Argentieri MP (2003) Metabolites in cell suspension cultures, calli, and in vitro regenerated organs of Hypericum perforatum cv. Topas. Plant Sci 165:977–982CrossRefGoogle Scholar
  97. Pavlik M, Vacek J, Klejdus B et al (2007) Hypericin and hyperforin production in St. John’s wort in vitro culture: influence of saccharose, polyethylene glycol, methyl jasmonate, and Agrobacterium tumefaciens. J Agric Food Chem 55:6147–6153CrossRefPubMedGoogle Scholar
  98. Petrich JW (2000) Excited-state intramolecular H-atom transfer in nearly symmetrical perylenequinones: hypericin, hypocrellin, and their analogs. Int Rev Phys Chem 19:479–500CrossRefGoogle Scholar
  99. Ploss O, Petereit F, Nahrstedt A (2001) Procyanidins from the herb of Hypericum perforatum. Pharmazie 56:509–511PubMedGoogle Scholar
  100. Pretto FR, Santarem ER (2000) Callus formation and plant regeneration from Hypericum perforatum leaves. Plant Cell, Tissue Organ Cult 62:107–113CrossRefGoogle Scholar
  101. Reuter H (1998) Chemistry and biology of Hypericum perforatum (St. John’s wort). ACS Symp Ser 691:287–298CrossRefGoogle Scholar
  102. Rutkowski DT, Kaufman RJ (2007) That which does not kill me makes me stronger: adapting to chronic ER stress. Trends Biochem Sci 32:469–476CrossRefPubMedGoogle Scholar
  103. Saddiqe Z, Naeem I, Maimoona A (2010) A review of the antibacterial activity of Hypericum perforatum L. J Ethnopharmacol 131:511–521CrossRefPubMedGoogle Scholar
  104. Savio LEB, Astarita LV, Santarém ER (2012) Secondary metabolism in micropropagated Hypericum perforatum L. grown in non-aerated liquid medium. Plant Cell, Tissue Organ Cult (PCTOC) 108:465–472CrossRefGoogle Scholar
  105. Schempp CM, Pelz K, Wittmer A, Schopf E, Simon JC (1999) Antibacterial activity of hyperforin from St. John's wort, against multiresistant Staphylococcus aureus and gram-positive bacteria. Lancet 353:2129CrossRefPubMedGoogle Scholar
  106. Schempp CM, Kirkin V, Simon-Haarhaus B et al (2002) Inhibition of tumour cell growth by hyperforin, a novel anticancer drug from St. Johnʼs wort that acts by induction of apoptosis. Oncogene 21:1242–1250CrossRefPubMedGoogle Scholar
  107. Schroder J (1999) The chalcone/stilbene synthase-type family of condensing enzymes. In: Sankawa U (ed) Comprehensive Natural Products Chemistry, vol 1. Elsevier, Amsterdam, pp 749–771CrossRefGoogle Scholar
  108. Sell TS, Belkacemi T, Flockerzi V, Beck A (2014) Protonophore properties of hyperforin are essential for its pharmacological activity. Sci Rep 4:7500.  https://doi.org/10.1038/srep07500 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Shazia F, Siddiqui MA, Ray PC et al (2014) Genetic diversity analysis in the Hypericum perforatum populations in the Kashmir valley by using inter-simple sequence repeats (ISSR) markers. Afr J Biotechnol 13(1):18–31CrossRefGoogle Scholar
  110. Sirvent T, Gibson D (2002) Induction of hypericins and hyperforin in Hypericum perforatum L. in response to biotic and chemical elicitors. Physiol Mol Plant Pathol 60:311–320CrossRefGoogle Scholar
  111. Soelberg J, Jorgensen LB, Jager AK (2007) Hyperforin accumulates in the translucent glands of Hypericum perforatum. Ann Bot 99:1097–1100CrossRefPubMedPubMedCentralGoogle Scholar
  112. Tedeschi E, Menegazzi M, Margotto D et al (2003) Anti-inflammatory actions of St John’s wort: inhibition of human inducible nitric-oxide synthase expression by down regulating signal transducer and activator of transcription-1alpha (STAT-1alpha) activation. J Pharmacol Exp Ther 307(1):254–261CrossRefPubMedGoogle Scholar
  113. Tian J, Zhang F, Cheng J, Guo S, Liu P, Wang H (2014) Antidepressant-like activity of adhyperforin, a novel constituent of Hypericum perforatum L. Sci Rep 4:5632.  https://doi.org/10.1038/srep05632 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Travis S, Bais W, Vivanco HP (2002) Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John's wort). Phytochemistry 60:289–293CrossRefGoogle Scholar
  115. Tusevski O, Petreska SJ, Stefova M et al (2014) Agrobacterium enhances xanthone production in Hypericum perforatum cell suspensions. Plant Growth Regul.  https://doi.org/10.1007/s10725-014-9989-6 CrossRefGoogle Scholar
  116. Tusevski O, Stanoeva JP, Stefova M, Gadzovska-Simic S (2015) Agrobacterium enhances xanthone production in Hypericum perforatum cell suspensions. Plant Growth Regul 76:199–210CrossRefGoogle Scholar
  117. Tusevski O, Stanoeva JP, Markoska E, Brndevska N, Stefova M, Simic SG (2016) Callus cultures of Hypericum perforatum L. a novel and efficient source for xanthone production. Plant Cell Tissus Organ Cult 125:309–319CrossRefGoogle Scholar
  118. Valletta A, De Angelis G, Badiali C, Miccheli Brasili E, Di Cocco ME, Pasqua G (2016) Acetic acid acts as an elicitor exerting a chitosan-like effect on xanthone biosynthesis in Hypericum perforatum L. root cultures. Plant Cell Rep 35:1009–1020CrossRefPubMedGoogle Scholar
  119. Victor BG, Wafaa MA, Hamed S (2014) Preliminary phytochemical screening and evaluation of in vitro oxidant activity of Iraqi species of Hypericum perforatum aerial part. Int Res J Pharm 5:369–373CrossRefGoogle Scholar
  120. Walker TS, Bais HP, Vivanco JM (2002) Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John’s wort). Phytochemistry 60:289–293CrossRefPubMedGoogle Scholar
  121. Wang J, Qian J, Yao L et al (2015) Enhanced production of flavonoids by methyl jasmonate elicitation in cell suspension culture of Hypericum perforatum. Bioresour Bioprocess 2:5CrossRefGoogle Scholar
  122. Wiechmann K, Hans M, Dagmar F, Johann J (2015) The acylphloroglucinols hyperforin and myrtucommulone A cause mitochondrial dysfunctions in leukemic cells by direct interference with mitochondria. Apoptosis 20:1508–1517CrossRefPubMedGoogle Scholar
  123. Woelk H (2000) Comparison of St John’s wort and imipramine for treating depression: randomised controlled trial. BMJ 321(7260):536–539CrossRefPubMedPubMedCentralGoogle Scholar
  124. Wojcik A, Podstolski A (2007) Leaf explant response in in vitro culture of St. John’s wort (Hypericum perforatum L.). Acta Physiol Plant 29:151–156CrossRefGoogle Scholar
  125. Wolfle U, Seelinger G, Christoph M et al (2014) Topical application of St. Johnʼs Wort (Hypericum perforatum). Planta Med 80:109–120CrossRefPubMedGoogle Scholar
  126. Yow CM, Tang HM, Chu ES et al (2012) Hypericin-mediated photodynamic antimicrobial effect on clinically isolated pathogens. Photochem Photobiol 88:626–632CrossRefPubMedGoogle Scholar
  127. Zanoli P (2004) Role of hyperforin in the pharmacological activities of St. John’s Wort. CNS Drug Rev 10(3):203–218CrossRefPubMedGoogle Scholar
  128. Zhao J, Davis L, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333CrossRefPubMedGoogle Scholar
  129. Zobayed SMA, Saxena PK (2004) Production of St. John’s wort plants under controlled environment for maximizing biomass and secondary metabolites. Vitro Cell Dev Biol Plant 40:108–114CrossRefGoogle Scholar
  130. Zobayed SMA, Murch SJ, Rupasinghe HPV (2003) Elevated carbon supply altered hypericin and hyperforin contents of St. John’s wort (Hypericum perforatum) grown in bioreactors. Plant Cell Tissus Organ Cult 75:143–149CrossRefGoogle Scholar
  131. Zobayed SMA, Murch SJ, Rupasinghe HPV (2004) In vitro production and chemical characterization of St. John’swort (Hypericum perforatum L. cv ‘NewStem’). Plant Sci 166:333–340CrossRefGoogle Scholar
  132. Zobayed SMA, Afreen F, Goto E et al (2006) Plant–environment interactions: accumulation of hypericin in dark glands of Hypericum perforatum. Ann Bot 98:793–804CrossRefPubMedPubMedCentralGoogle Scholar
  133. Zubricka D, Misianikova A, Henzelyova J et al (2015) Xanthones from roots, hairy roots and cell suspension cultures of selected Hypericum species and their antifungal activity against Candida albicans. Plant Cell Rep 34:1953–1962CrossRefPubMedGoogle Scholar

Copyright information

© Society for Plant Biochemistry and Biotechnology 2019

Authors and Affiliations

  • Mohammad Yaseen Mir
    • 1
    Email author
  • Saima Hamid
    • 1
  • Azra N. Kamili
    • 1
  • Qazi P. Hassan
    • 2
  1. 1.P.G. Department of Environmental Science/Centre of Research for DevelopmentUniversity of KashmirSrinagarIndia
  2. 2.Indian Institute of Integrative Medicine (CSIR)Sanat Nagar, SrinagarIndia

Personalised recommendations