Journal of Plant Biochemistry and Biotechnology

, Volume 25, Issue 4, pp 433–436 | Cite as

Characterization of methylsulfinylalkyl glucosinolate specific polyclonal antibodies

  • Nadia Mirza
  • Alexander Schulz
  • Barbara Ann Halkier
Short Communication
  • 130 Downloads

Abstract

Antibodies towards small molecules, like plant specialized metabolites, are valuable tools for developing quantitative and qualitative analytical techniques. Glucosinolates are the specialized metabolites characteristic of the Brassicales order. Here we describe the characterization of polyclonal rabbit antibodies raised against the 4-methylsulfinylbutyl glucosinolate, glucoraphanin that is one of the major glucosinolates in the model plant Arabidopsis thaliana (hereafter Arabidopsis). Analysis of the cross-reactivity of the antibodies against a number of glucosinolates demonstrated that it was highly selective for methionine-derived aliphatic glucosinolates with a methyl-sulfinyl group in the side chain. Use of crude plant extracts from Arabidopsis mutants with different glucosinolate profiles showed that the antibodies recognized aliphatic glucosinolates in a plant extract and did not cross-react with other metabolites. These methylsulfinylalkyl glucosinolate specific antibodies have prospective use in multiple applications such as ELISA, co-immunoprecipitation and immunolocalization of glucosinolates.

Keywords

Antibody characterization Small molecules Methylsulfinylalkyl glucosinolate 

Supplementary material

13562_2015_345_MOESM1_ESM.docx (17 kb)
Supplementary table 1(DOCX 16 kb)

References

  1. Attoumbre J, Bienaime C, Dubois F, Fliniaux MA, Chabbert B, Baltora-Rosset S (2010) Development of antibodies against secoisolariciresinol–application to the immunolocalization of lignans in Linum usitatissimum seeds. Phytochemistry 71(17–18):1979–1987. doi:10.1016/j.phytochem.2010.09.002 CrossRefPubMedGoogle Scholar
  2. Cibotti MC, Freier C, Andrieux J, Plat M, Cosson L, Bohuon C (1990) Monoclonal antibodies to bis-indole alkaloids of Catharanthus roseus and their use in enzyme-linked immuno-sorbent-assays. Phytochemistry 29(7):2109–2114CrossRefPubMedGoogle Scholar
  3. Clementi ME, Marini S, Condo SG, Giardina B (1991) Antibodies against small molecules. Annali Dell'Istituto Superiore di Sanita 27(1):139–143PubMedGoogle Scholar
  4. De Diego N, Rodriguez JL, Dodd IC, Perez-Alfocea F, Moncalean P, Lacuesta M (2013) Immunolocalization of IAA and ABA in roots and needles of radiata pine (Pinus radiata) during drought and rewatering. Tree Physiol 33(5):537–549. doi:10.1093/treephys/tpt033 CrossRefPubMedGoogle Scholar
  5. Despres N, Grant AM (1998) Antibody interference in thyroid assays: a potential for clinical misinformation. Clin Chem 44(3):440–454PubMedGoogle Scholar
  6. Forestan C, Varotto S (2013) Auxin immunolocalization in plant tissues. Methods in molecular biology (Clifton, NJ) 959:223–233. doi:10.1007/978-1-62703-221-6_15
  7. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333. doi:10.1146/annurev.arplant.57.032905.105228 CrossRefPubMedGoogle Scholar
  8. Hassan F, Rothnie NE, Yeung SP, Palmer MV (1988) Enzyme-linked immunosorbent assays for alkenyl glucosinolates. J Agric Food Chem 36(2):398–403. doi:10.1021/jf00080a037 CrossRefGoogle Scholar
  9. Kelly PJ, Bones A, Rossiter JT (1998) Sub-cellular immunolocalization of the glucosinolate sinigrin in seedlings of Brassica juncea. Planta 206(3):370–377CrossRefPubMedGoogle Scholar
  10. Müller R, de Vos M, Sun J, Sønderby I, Halkier B, Wittstock U, Jander G (2010) Differential effects of indole and aliphatic glucosinolates on lepidopteran herbivores. J Chem Ecol 36(8):905–913. doi:10.1007/s10886-010-9825-z CrossRefPubMedGoogle Scholar
  11. Perocco P, Bronzetti G, Canistro D, Valgimigli L, Sapone A, Affatato A, Pedulli GF, Pozzetti L, Broccoli M, Iori R, Barillari J, Sblendorio V, Legator MS, Paolini M, Abdel-Rahman SZ (2006) Glucoraphanin, the bioprecursor of the widely extolled chemopreventive agent sulforaphane found in broccoli, induces phase-I xenobiotic metabolizing enzymes and increases free radical generation in rat liver. Mutat Res 595(1–2):125–136. doi:10.1016/j.mrfmmm.2005.11.007 CrossRefPubMedGoogle Scholar
  12. Shoyama Y (2011) Monoclonal antibodies against small molecule natural products and their applications, eastern blotting and knockout extract. Pharmaceuticals 4(7):950–963CrossRefPubMedCentralGoogle Scholar
  13. Sonderby IE, Burow M, Rowe HC, Kliebenstein DJ, Halkier BA (2010) A complex interplay of three R2R3 MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis. Plant Physiol 153(1):348–363. doi:10.1104/pp.109.149286 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Thomas C, Bronner R, Molinier J, Prinsen E, van Onckelen H, Hahne G (2002) Immuno-cytochemical localization of indole-3-acetic acid during induction of somatic embryogenesis in cultured sunflower embryos. Planta 215(4):577–583. doi:10.1007/s00425-002-0791-8 CrossRefPubMedGoogle Scholar
  15. Zechmann B, Stumpe M, Mauch F (2011) Immunocytochemical determination of the subcellular distribution of ascorbate in plants. Planta 233(1):1–12. doi:10.1007/s00425-010-1275-x CrossRefPubMedGoogle Scholar

Copyright information

© Society for Plant Biochemistry and Biotechnology 2016

Authors and Affiliations

  • Nadia Mirza
    • 1
  • Alexander Schulz
    • 1
  • Barbara Ann Halkier
    • 1
  1. 1.DynaMo Center, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark

Personalised recommendations