Journal of Plant Biochemistry and Biotechnology

, Volume 24, Issue 2, pp 210–217

Comprehensive molecular evolution and gene expression analyses of the ABC1 atypical kinase family in rice and Arabidopsis

  • Qingsong Gao
  • Hui Zang
  • Yun Gao
  • Zefeng Yang
  • Yong Zhou
  • Yuming Luo
  • Yuan Yuan
  • Yifan Wang
  • Liming Yang
  • Xing Xu
  • Jun Wang
  • Chenwu Xu
  • Guohua Liang
Original Article
  • 349 Downloads

Abstract

The ABC1 atypical kinases (aPKs) have been extensively studied in bacteria, yeast and human, where their mutation causes a deficiency of ubiquinone, an isoprenoid compound in the respiratory electron transfer chain. Considerably less is known, however, about their evolution and function in higher plants. In this study, we identified 16 ABC1-domain containing genes from model plant rice by comprehensive genome analysis and gene cloning. Detection of positive selection showed that purifying selection was the major force underlying the evolution of most rice and Arabidopsis ABC1s. However, the expression profiles of plant ABC1s appear to have diverged based on microarray data analysis and realtime PCR; some of them are primarily expressed in developing leaves, some in stamens and/or mature pollen, whereas others in diverse tissues and organs. The possible functions of plant ABC1s were identified using genome-wide coexpression analysis. This analysis suggested that many of them might be involved in the regulation of isoprenoid biosynthesis. In conclusion, the plant ABC1 aPKs, which harbor distinct expression patterns, might have conserved functions in modulating isoprenoid metabolism.

Keywords

ABC1 gene Atypical protein kinase Molecular evolution Gene expression Coexpression analysis Oryza sativa 

Abbreviations

ABC1

Activity of bc1 complex

aPK

Atypical protein kinase

LRT

Likelihood ratio test

Supplementary material

13562_2014_259_MOESM1_ESM.doc (294 kb)
ESM 1(DOC 294 kb)
13562_2014_259_MOESM2_ESM.xls (88 kb)
ESM 2(XLS 87 kb)

References

  1. Bousquet I, Dujardin G, Slonimski PP (1991) ABC1, a novel yeast nuclear gene has a dual function in mitochondria: it suppresses a cytochrome b mRNA translation defect and is essential for the electron transfer in the bc1 complex. EMBO J 10:2023–2031PubMedCentralPubMedGoogle Scholar
  2. Cardazzo B, Hamel P, Sakamoto W, Wintz H, Dujardin G (1998) Isolation of an Arabidopsis thaliana cDNA by complementation of a yeast abc1 deletion mutant deficient in complex III respiratory activity. Gene 221:117–125CrossRefPubMedGoogle Scholar
  3. de Hoon MJ, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20:1453–1454CrossRefPubMedGoogle Scholar
  4. Do TQ, Hsu AY, Jonassen T, Lee PT, Clarke CF (2001) A defect in coenzyme Q biosynthesis is responsible for the respiratory deficiency in Saccharomyces cerevisiae abc1 mutants. J Biol Chem 276:18161–18168CrossRefPubMedGoogle Scholar
  5. Gao Q, Yang Z, Zhou Y, Yin Z, Qiu J, Liang G, Xu C (2012) Characterization of an Abc1 kinase family gene OsABC1-2 conferring enhanced tolerance to dark-induced stress in rice. Gene 498:155–163CrossRefPubMedGoogle Scholar
  6. Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80CrossRefPubMedCentralPubMedGoogle Scholar
  7. Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinforma 2008:420747CrossRefGoogle Scholar
  8. Jasinski M, Sudre D, Schansker G, Schellenberg M, Constant S, Martinoia E, Bovet L (2008) AtOSA1, a member of the Abc1-like family, as a new factor in cadmium and oxidative stress response. Plant Physiol 147:719–731CrossRefPubMedCentralPubMedGoogle Scholar
  9. Lee TH, Tang H, Wang X, Paterson AH (2012) PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res 41:D1152–D1158CrossRefPubMedCentralPubMedGoogle Scholar
  10. Lundquist PK, Davis JI, van Wijk KJ (2012a) ABC1K atypical kinases in plants: filling the organellar kinase void. Trends Plant Sci 17:546–555CrossRefPubMedCentralPubMedGoogle Scholar
  11. Lundquist PK, Poliakov A, Bhuiyan NH, Zybailov B, Sun Q, van Wijk KJ (2012b) The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genome-wide coexpression analysis. Plant Physiol 158:1172–1192CrossRefPubMedCentralPubMedGoogle Scholar
  12. Mollet J, Delahodde A, Serre V, Chretien D, Schlemmer D, Lombes A, Boddaert N, Desguerre I, de Lonlay P, de Baulny HO, Munnich A, Rotig A (2008) CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am J Hum Genet 82:623–630CrossRefPubMedCentralPubMedGoogle Scholar
  13. Poon WW, Davis DE, Ha HT, Jonassen T, Rather PN, Clarke CF (2000) Identification of Escherichia coli ubiB, a gene required for the first monooxygenase step in ubiquinone biosynthesis. J Bacteriol 182:5139–5146CrossRefPubMedCentralPubMedGoogle Scholar
  14. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506CrossRefPubMedGoogle Scholar
  15. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedCentralPubMedGoogle Scholar
  16. Tauche A, Krause-Buchholz U, Rodel G (2008) Ubiquinone biosynthesis in Saccharomyces cerevisiae: the molecular organization of O-methylase Coq3p depends on Abc1p/Coq8p. FEMS Yeast Res 8:1263–1275CrossRefPubMedGoogle Scholar
  17. Toufighi K, Brady SM, Austin R, Ly E, Provart NJ (2005) The botany array resource: e-Northerns, expression angling, and promoter analyses. Plant J 43:153–163CrossRefPubMedGoogle Scholar
  18. Vranova E, Coman D, Gruissem W (2012) Structure and dynamics of the isoprenoid pathway network. Mol Plant 5:318–333CrossRefPubMedGoogle Scholar
  19. Wang L, Xie W, Chen Y, Tang W, Yang J, Ye R, Liu L, Lin Y, Xu C, Xiao J, Zhang Q (2010) A dynamic gene expression atlas covering the entire life cycle of rice. Plant J 61:752–766CrossRefPubMedGoogle Scholar
  20. Wang C, Jing R, Mao X, Chang X, Li A (2011) TaABC1, a member of the activity of bc1 complex protein kinase family from common wheat, confers enhanced tolerance to abiotic stresses in Arabidopsis. J Exp Bot 62:1299–1311CrossRefPubMedCentralPubMedGoogle Scholar
  21. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591CrossRefPubMedGoogle Scholar
  22. Yang Z, Gu S, Wang X, Li W, Tang Z, Xu C (2008) Molecular evolution of the CPP-like gene family in plants: insights from comparative genomics of Arabidopsis and rice. J Mol Evol 67:266–277CrossRefPubMedGoogle Scholar
  23. Yang S, Zeng X, Li T, Liu M, Zhang S, Gao S, Wang Y, Peng C, Li L, Yang C (2012a) AtACDO1, an ABC1-like kinase gene, is involved in chlorophyll degradation and the response to photooxidative stress in Arabidopsis. J Exp Bot 63:3959–3973CrossRefPubMedGoogle Scholar
  24. Yang S, Li T, Liu M, Gao S, Yang S, Li L, Yang C (2012b) Phylogenetic, structure and expression analysis of ABC1Ps gene family in rice. Biol Plant 56:667–674CrossRefGoogle Scholar
  25. Zheng Q, Wang XJ (2008) GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Res 36:W358–W363CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Society for Plant Biochemistry and Biotechnology 2014

Authors and Affiliations

  • Qingsong Gao
    • 1
  • Hui Zang
    • 2
  • Yun Gao
    • 3
  • Zefeng Yang
    • 3
  • Yong Zhou
    • 3
  • Yuming Luo
    • 1
  • Yuan Yuan
    • 3
  • Yifan Wang
    • 3
  • Liming Yang
    • 1
  • Xing Xu
    • 3
  • Jun Wang
    • 4
  • Chenwu Xu
    • 3
  • Guohua Liang
    • 3
  1. 1.Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze LakeHuaiyin Normal UniversityHuai’anChina
  2. 2.Institute of Agricultural Sciences in Coastal Area of Jiangsu ProvinceYan ChenChina
  3. 3.Jiangsu Provincial Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina
  4. 4.Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingChina

Personalised recommendations