Phylogenetic analyses and evolutionary relationships of Saraca asoca with their allied taxa (Tribe-Detarieae) based on the chloroplast matK gene

  • Jayita Saha
  • Kamala GuptaEmail author
  • Bhaskar GuptaEmail author
Original Article


Saraca asoca (Roxb.) Wilde, (Ashok) is a plant native to India and is popular for its anti-cancer, anti-menorrhagic, anti-oxytocic, anti-microbial activities having extended uses in ayurveda, unani and homeopathy. Partial chloroplast matK gene (900 bp) was PCR amplified, sequenced and used to investigate the evolutionary inter- relationships of Indian Saraca asoca with other members of the tribe Detarieae belonging to the subfamily Caesalpinioideae under the family Leguminosae. The sequence analysis of chloroplast matK belonging to 70 taxa exhibited 649 conserved sites, 244 variable sites and 119 parsimony informative sites. Average composition of nucleotides among taxa were found to be approximately, A-30.5 %, T-37.3 %, G-14.5 %, C-17.7 % and the transition/transversion ratio was 0.77, while the overall mean distance was 0.022 ± 0.002 on the basis of the number of substitutions. These analyses indicate that Saraca asoca may have passed through mostly synonymous substitution during evolution. Moreover, it is observed that the transitional substitution is more pronounced in 3rd codon position whereas transversions are saturated among all three codon positions. Eurypetalum tessmannii showed highest Disparity Index (DI = 0.06) with Saraca asoca. The close relationship of Saraca asoca was established with Saraca palembanica, Saraca declinata, Endertia spectabilis and Lysidice rhodostegia.


Detarieae Disparity index MaturaseMaximum likelihood MEGA Saraca asoca 



Internal transcribed spacer




Maturase K


Molecular evolutionary genetics analysis


Maximum likelihood


National Center for Biotechnology Information


Ribulose-bisphosphate carboxylase large-subunit







The authors acknowledge the support of technical facilities available at Presidency University. Financial assistance from the Department of Biotechnology (DBT-RGYI) and the Department of Science and Technology (DST-SERB FAST Track) (Govt. of India) are also gratefully acknowledged. Authors thank the anonymous reviewers for their valuable comments and suggestions to improve our manuscript.

Supplementary material

13562_2013_237_MOESM1_ESM.docx (20 kb)
Table S1 (DOCX 19 kb)
13562_2013_237_MOESM2_ESM.docx (46 kb)
Fig. S1 (DOCX 46 kb)


  1. Asahina H, Shinozaki J, Masuda K, Morimitsu Y, Satake M (2010) Identification of medicinal Dendrobium species by phylogenetic analyses using matK and rbcL sequences. J Nat Med 64:133–138PubMedCrossRefGoogle Scholar
  2. Bruneau A, Breteler FJ, Wieringa JJ, Gervais GYF, Forest F (2000) Phylogenetic relationships in tribes Macrolobieae and Detarieae as inferred from chloroplast trnL intron sequences. In: Herendeen P, Bruneau A (eds) Advances in legume systematic Part 9. Royal Botanic gardens, Kew, pp 121–149Google Scholar
  3. Bruneau A, Forest F, Herendeen P, Klitgaard BB, Lewis GP (2001) Phylogenetic relationship in the caesalpnioideae (Leguminosae) as inferred from the chloroplast trnL intron sequences. Syst Bot 26:487–514Google Scholar
  4. Bruni I, Mattia FD, Galimberti A, Galasso G, Banfi E, Casiraghi M, Labra M (2010) Identification of poisonous plants by DNA barcoding approach. Int J Leg Med 124(6):595–603. doi: 10.1007/s00414-010-0447-3 CrossRefGoogle Scholar
  5. Clark LG, Zhang W, Wendel JF (1995) A phylogeny of the grass family (Poaceae) based on ndhF sequence data. Syst Bot 20:436–460CrossRefGoogle Scholar
  6. Clegg MT, Gaut BS, Learn GH, Morton BR (1994) Rates and patterns of chloroplast DNA evolution. Proc Natl Acad Sci U S A 91:6795–6801PubMedCentralPubMedCrossRefGoogle Scholar
  7. Ems SC, Morden CW, Dixon CK, Wolfe KH, Depamphilis CW, Palmer JD (1995) Transcription, splicing and editing of plastid RNAs in the nonphotosynthetic plant Epifagus virginiana. Plant Mol Biol 29:721–733PubMedCrossRefGoogle Scholar
  8. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  9. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  10. Fougere-Danezan M, Herendeen PS, Maumont S, Bruneau A (2010) Morphological evolution in the variable resin-producing Detarieae (Fabaceae): do morphological characters retain a phylogenetic signal? Ann Bot 105:311–325PubMedCentralPubMedCrossRefGoogle Scholar
  11. Gao T, Sun Z, Yao H, Song J, Zhu Y, Ma X, Chen S (2011) Identification of Fabaceae plants using the DNA barcode matK. Planta Med 77:92–94PubMedCrossRefGoogle Scholar
  12. Guo HY, Wang WW, Yang N, Guo BL, Zhang S, Yang RJ, Yuan Y, Yu JL, Hu SN, Sun Q, Yu J (2010) DNA barcoding provides distinction between Radix Astragali and its adulterants. Sci China Life Sci 53:992–999PubMedCrossRefGoogle Scholar
  13. Herendeen P, Lewis GP, Bruneau A (2003) Floral morphology in caesalpinioid legumes: testing the monophyly of the ‘Umtiza clade’. Int J Plant Sci 164:393–407CrossRefGoogle Scholar
  14. Hilu KW, Liang H (1997) The matK gene: sequence variation and application in plant systematics. Am J Bot 84:830–839PubMedCrossRefGoogle Scholar
  15. Holmquist R (1983) Transitions and transversion in evolutionary descent: an approach to understanding. J Mol Evol 19:134–144PubMedCrossRefGoogle Scholar
  16. Howe CJ, Barbrook AC, Koumandou VL, Nisbet RER, Symington HA, Wightman TF (2003) Evolution of the chloroplast genome. Phil Trans R Soc Lond B 358:99–107CrossRefGoogle Scholar
  17. Ito M, Kawamoto A, Kita Y, Yukawa T, Kurita S (1999) Phylogenetic relationships of Amaryllidaceae based on matK sequence data. J Plant Res 112:207–216CrossRefGoogle Scholar
  18. Johnson LS, Soltis DE (1995) Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Ann Mo Bot Gard 82:149–175CrossRefGoogle Scholar
  19. Kelchner SA (2000) The evolution of noncoding chloroplast DNA and its application in plant systematics. Ann Mo Bot Gard 87:482–498CrossRefGoogle Scholar
  20. Khidir WH, Hongping L (1997) The matK gene: sequence variation and application in plant systematics. Am J Bot 19:830–839Google Scholar
  21. Kim DK, Kim JH (2011) Molecular phylogeny of tribe Forsythieae (Oleaceae) based on nuclear ribosomal DNA internal transcribed spacers and plastid DNA trnL-F and matK gene sequences. J Plant Res 124:339–347. doi: 10.1007/s10265-010-0383-9 PubMedCrossRefGoogle Scholar
  22. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  23. Kosakovsky P, Sergei L, Frost SDW (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222CrossRefGoogle Scholar
  24. Kumar S, Gadagkar SR (2001) Disparity index: a simple statistic to measure and test the homogeneity of substitution patterns between molecular sequences. Genetics 158:1321–1327PubMedCentralPubMedGoogle Scholar
  25. Lahaye R, van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, Maurin O, Duthoit S, Barraclough TG, Savolainen V (2008) DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci U S A 105:2923–2928PubMedCentralPubMedCrossRefGoogle Scholar
  26. Lake JA (1987) A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol 4:167–191PubMedGoogle Scholar
  27. Lee J, Hymowitz T (2001) A molecular phylogenetic study of the subtribe Glycininae (Leguminosae) derived from the chloroplast DNA Rps16 Intron Sequences. Am J Bot 88(11):2064–2073PubMedCrossRefGoogle Scholar
  28. Lu JM, Wen J, Lutz S, Wang YP, Li DZ (2012) Phylogenetic relationships of Chinese Adiantum based on five plastid markers. J Plant Res 125:237–249. doi: 10.1007/s10265-011-0441-y PubMedCrossRefGoogle Scholar
  29. Mercure M, Lewis GP, Bruneau A, Herendeen PS (2008) Phylogenetic patterns and diversification in the caesalpinioid legumes. 86(7):697–718Google Scholar
  30. Moritz C, Schneider CJ, Wake DB (1992) Evolutionary relationships within the Ensatina eschscholtzii complex confirm the ring species interpretation. Syst Biol 41:273–291CrossRefGoogle Scholar
  31. Muse SV, Gaut BS (1994) A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol 11:715–724PubMedGoogle Scholar
  32. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426PubMedGoogle Scholar
  33. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  34. Potter D, Gao F, Bortiri PE, Oh SH, Baggett S (2002) Phylogenetic relationships in Rosaceae inferred from chloroplast matK and trnL-trnF nucleotide sequence data. Plant Systemat Evol 231:77–89CrossRefGoogle Scholar
  35. Quicke DLJ (1993) Principle and techniques of contemporary taxonomy. Chapman & Hall, GlasgowCrossRefGoogle Scholar
  36. Redden KM, Herendeen PS, Wurdack KJ (2010) Phylogenetic relationships of the Northeastern South American Brownea Clade of tribe Detarieae (Leguminosae: Caesalpinioideae) based on morphology and molecular data. Syst Bot 35(3):524–533CrossRefGoogle Scholar
  37. Reddy BU (2009) A phylogenetic analysis of the Cucurbitaceae: evidences from matK nucleotide sequences. Int J Bioinformatics Res 1(2):47–53CrossRefGoogle Scholar
  38. Saha J, Gupta K, Gupta B (2013) A new insight into the phylogeny of vascular cryptogams with special reference to Lycophytes inferred from nuclear ITS/5.8S rDNA sequences. J Plant Biochem Biotechnol [In-Press] 10.1007/s13562-013-0198-6
  39. Saha J, Mitra T, Gupta K, Mukherjee S (2012) Phytoconstituents and HPTLC analysis in saraca asoca (roxb.)Wilde. Int J Pharm Sci 4(l):96–99Google Scholar
  40. Salazar GA, Chase MW, Soto Arenas MA, Ingrouille MJ (2003) Phylogenetics of Cranichdeae with emphasis on Spiranthinae (Orchidaceae, Orchidoideae): evidence from plastid and nuclear DNA sequences. Am J Bot 90:777–795PubMedCrossRefGoogle Scholar
  41. Selvaraj D, Sarma RK, Sathishkumar R (2008) Phylogenetic analysis of chloroplast matK gene from Zingiberaceae for plant DNA barcoding. Bioinformation 3(1):24–27PubMedCentralPubMedCrossRefGoogle Scholar
  42. Sergei L, Kosakovsky P, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679CrossRefGoogle Scholar
  43. Soltis DE, Soltis PS (1998) Choosing an approach and an appropriate gene for phylogenetic analysis. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II: DNA sequencing. Kluwer, Dordrecht, pp 21–24CrossRefGoogle Scholar
  44. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035PubMedCentralPubMedCrossRefGoogle Scholar
  45. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  46. Tucker SC (2000a) Evolutionary loss of sepals and/or petals in Detarioid legume taxa Aphanocalyx, Brachystegia, and Monopetalanthus (Leguminosae: Caesalpinioideae). Am J Bot 87:608–624PubMedCrossRefGoogle Scholar
  47. Tucker SC (2000b) Floral development and homeosis in Saraca (Leguminosae: Caesalpinioideae: Detarieae). Int J Plant Sci 161:537–549CrossRefGoogle Scholar
  48. Tucker SC (2001) The ontogenetic basis for missing petals in Crudia (Leguminosae: Caesalpinioideae: Detarieae). Int J Plant Sci 162:83–89CrossRefGoogle Scholar
  49. Vijayan K, Tsou CH (2010) DNA barcoding in plants: taxonomy in a new perspective. Curr Sci 99(11):1530–1541Google Scholar
  50. Whitfeld PR, Bottemley W (1983) Organization and structure of chloroplast genes. Annu Rev Plant Physiol 34:279–310CrossRefGoogle Scholar
  51. Wojciechowski MF, Lavin M, Sanderson MJ (2004) A phylogeny of legumes (leguminosae) based on analysis of the plastid matk gene resolves many well-supported subclades within the family. Am J Bot 91(11):1846–1862PubMedCrossRefGoogle Scholar
  52. Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic, New York, pp 97–166CrossRefGoogle Scholar

Copyright information

© Society for Plant Biochemistry and Biotechnology 2013

Authors and Affiliations

  1. 1.Department of BotanyPresidency UniversityKolkataIndia
  2. 2.Department of Biotechnology, Molecular Biology LaboratoryPresidency UniversityKolkataIndia

Personalised recommendations