Advertisement

Réanimation

, Volume 25, Supplement 2, pp 83–91 | Cite as

Pneumonie acquise sous ventilation mécanique : quoi de neuf en 2016 ?

  • E. Jaillette
  • G. Ledoux
  • R. Lawson
  • B. Misset
  • S. Nseir
Mise au Point / Update

Résumé

La prévention et la prise en charge des pneumonies acquises sous ventilation mécanique (PAVM) représentent un enjeu majeur dans la gestion des soins et demeurent au centre des préoccupations des médecins réanimateurs. L’évaluation des taux de PAVM est un indice de qualité des soins largement utilisé pour comparer les hôpitaux aux États-Unis. Des travaux récents ont mis en évidence que, selon la définition appliquée, les taux de PAVM pouvaient varier de manière très importante. L’intérêt de l’utilisation de la nouvelle définition proposée pour catégoriser les complications associées à la ventilation mécanique (VAC) semble limité en raison de sa faible corrélation avec les PAVM. Plusieurs nouvelles méthodes diagnostiques sont en cours d’évaluation: analyse du microbiote pulmonaire ou des composés organiques volatils et étude par polymerase chain reaction (PCR) du liquide de lavage bronchoalvéolaire. Un nouveau score prédictif des PAVM, associant le dosage de la procalcitonine (PCT) à l’interprétation de l’échographie pulmonaire, semble également prometteur. L’aspiration sousglottique est une mesure efficace dans la prévention des PAVM. La régulation continue de la pression du ballonnet est une mesure préventive prometteuse, mais d’autres études sont nécessaires avant d’en recommander l’utilisation. Les études futures devront également déterminer la place de l’antibioprophylaxie inhalée et de l’antibiothérapie des trachéobronchites acquises sous ventilation mécanique dans la prévention des PAVM. Des études récentes ne permettent pas de recommander l’utilisation des probiotiques, des systèmes clos d’aspiration ou de sondes d’intubation munies d’un ballonnet conique ou en polyuréthane pour prévenir les PAVM. Deux méta-analyses récentes suggèrent un bénéfice de l’antibiothérapie inhalée chez les patients présentant une PAVM. Cependant, ces données doivent être validées par des études randomisées de meilleure qualité.

Mots clés

Ventilation mécanique Pneumonie Diagnostic Prévention 

Ventilator-associated pneumonia: What’s new in 2016?

Abstract

Prevention and treatment of ventilator-associated pneumonia (VAP) are important issues in critically ill patients. The incidence of VAP is used as an indicator of quality in the United States. Recent studies demonstrated that the incidence of this infection is directly related to the diagnosis method used. The new definition suggested for ventilator-associated complications is not accurate in diagnosing VAP; therefore it is not recommended for routine use. Several diagnosis methods are under investigation such as assessment of lung microbiota, metabolic analysis of exhaled breath, and multiplex polymerase chain reaction performed on bronchoalveolar lavage. A new score based on procalcitonin level and chest echography might also be helpful. Subglottic secretion drainage is an efficient preventive measure for VAP. Continuous control of tracheal cuff pressure is a promising preventive measure, but its efficiency should be confirmed by further studies. The impact of prophylactic inhaled antimicrobials, and systemic antibiotic treatment in patients with ventilator-associated tracheobronchitis on VAP incidence should also be investigated. Recent studies showed no clear benefit of using probiotics, conical-shaped cuff, or polyurethane-cuffed tracheal tubes on VAP incidence. Two recent meta-analyses suggested a beneficial effect of inhaled antimicrobials in treating VAP. However, further well-designed and performed studies are required to confirm these data.

Keywords

Mechanical ventilation Pneumonia Diagnosis Prevention 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Nair GB, Niederman MS (2015) Ventilator-associated pneumonia: present understanding and ongoing debates. Intensive Care Med 41: 34–48CrossRefPubMedGoogle Scholar
  2. 2.
    Bouadma L, Deslandes E, Lolom I, et al (2010). Long-term impact of a multifaceted prevention program on ventilatorassociated pneumonia in a medical intensive care unit. Clin Infect Dis 51: 1115–22CrossRefPubMedGoogle Scholar
  3. 3.
    Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia (2005) Am J Respir Crit Care Med 171: 388-416Google Scholar
  4. 4.
    Klompas M (2007) Does this patient have ventilator-associated pneumonia? JAMA 297: 1583–93CrossRefPubMedGoogle Scholar
  5. 5.
    Rao VK, Ritter J, Kollef MH (1998) Utility of transbronchial biopsy in patients with acute respiratory failure: a postmortem study. Chest 1998 114: 549–55Google Scholar
  6. 6.
    Schurink CAM, Van Nieuwenhoven CA, Jacobs JA, et al (2004) Clinical pulmonary infection score for ventilator-associated pneumonia: accuracy and inter-observer variability. Intensive Care Med 30: 217–24CrossRefPubMedGoogle Scholar
  7. 7.
    Stevens JP, Kachniarz B, Wright SB, et al (2014) When policy gets it right: variability in US hospitals’ diagnosis of ventilatorassociated pneumonia. Crit Care Med 42: 497–503CrossRefPubMedGoogle Scholar
  8. 8.
    CDC_VAE_CommunicationsSummary-for-compliance_20120313. pdf [Internet]. [cité 30 sept 2015]. Disponible sur: http://www.cdc.gov/nhsn/PDFs/vae/CDC_VAE_CommunicationsSummary-forcompliance_20120313.pdfGoogle Scholar
  9. 9.
    Klompas M, Khan Y, Kleinman K, et al (2011) Multicenter evaluation of a novel surveillance paradigm for complications of mechanical ventilation. PloS One 6:e18062CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hayashi Y, Morisawa K, Klompas M, et al (2013) Toward improved surveillance: the impact of ventilator-associated complications on length of stay and antibiotic use in patients in intensive care units. Clin Infect Dis 56: 471–7CrossRefPubMedGoogle Scholar
  11. 11.
    Stevens JP, Silva G, Gillis J, et al (2014) Automated surveillance for ventilator-associated events. Chest 146: 1612–8CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Muscedere J, Sinuff T, Heyland DK, et al (2013) The clinical impact and preventability of ventilator-associated conditions in critically ill patients who are mechanically ventilated. Chest 144: 1453–60CrossRefPubMedGoogle Scholar
  13. 13.
    Bouadma L, Sonneville R, Garrouste-Orgeas M, et al (2015) Ventilator-associated events: prevalence, outcome, and relationship with ventilator-associated pneumonia. Crit Care Med 43: 1798–806CrossRefPubMedGoogle Scholar
  14. 14.
    Klein Klouwenberg PM, van Mourik MS, Ong DS, et al (2014) Electronic implementation of a novel surveillance paradigm for ventilator-associated events. Feasibility and validation. Am J Respir Crit Care Med 189: 947–55CrossRefGoogle Scholar
  15. 15.
    Ego A, Preiser JC, Vincent JL (2015) Impact of diagnostic criteria on the incidence of ventilator-associated pneumonia. Chest 147: 347–55CrossRefPubMedGoogle Scholar
  16. 16.
    Kollef MH (2000) Inadequate antimicrobial treatment: an important determinant of outcome for hospitalized patients. Clin Infect Dis 31:S131–S8CrossRefPubMedGoogle Scholar
  17. 17.
    Isaacs RJ, Debelak K, Norris PR, et al (2012) Non-invasive detection of pulmonary pathogens in ventilator-circuit filters by PCR. Am J Transl Res 4: 72–82PubMedPubMedCentralGoogle Scholar
  18. 18.
    May AK, Brady JS, Romano-Keeler J, et al (2015) A pilot study of the noninvasive assessment of the lung microbiota as a potential tool for the early diagnosis of ventilator-associated pneumonia. Chest 147: 1494–502CrossRefPubMedGoogle Scholar
  19. 19.
    Bos LDJ, Sterk PJ, Schultz MJ (2013) Volatile metabolites of pathogens: a systematic review. PLoS Pathog 9:e1003311CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fowler SJ, Basanta-Sanchez M, Xu Y, et al (2015) Surveillance for lower airway pathogens in mechanically ventilated patients by metabolomic analysis of exhaled breath: a case-control study. Thorax 70: 320–5CrossRefPubMedGoogle Scholar
  21. 21.
    Torres A, Fernández-Barat L (2014) New developments in the diagnosis of VAP make bronchoalveolar lavage less useful: some considerations. Intensive Care Med 40: 1778–9CrossRefPubMedGoogle Scholar
  22. 22.
    Baudel JL, Tankovic J, Dahoumane R, et al (2014) Multiplex PCR performed of bronchoalveolar lavage fluid increases pathogen identification rate in critically ill patients with pneumonia: a pilot study. Ann Intensive Care 4: 35CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lauzier F, Ruest A, Cook D, et al (2008) The value of pretest probability and modified clinical pulmonary infection score to diagnose ventilator-associated pneumonia. J Crit Care 23: 50–7CrossRefPubMedGoogle Scholar
  24. 24.
    Zagli G, Cozzolino M, Terreni A, et al (2014) Diagnosis of ventilator-associated pneumonia: a pilot, exploratory analysis of a new score based on procalcitonin and chest echography. Chest 146: 1578–85CrossRefPubMedGoogle Scholar
  25. 25.
    Klompas M, Branson R, Eichenwald EC, et al (2014) Strategies to prevent ventilator-associated pneumonia in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol 35:S133–S54PubMedGoogle Scholar
  26. 26.
    Dezfulian C, Shojania K, Collard HR, et al (2005) Subglottic secretion drainage for preventing ventilator-associated pneumonia: a meta-analysis. Am J Med 118: 11–8CrossRefPubMedGoogle Scholar
  27. 27.
    Lacherade JC, De Jonghe B, Guezennec P, et al (2010) Intermittent subglottic secretion drainage and ventilator-associated pneumonia: a multicenter trial. Am J Respir Crit Care Med 182: 910–7CrossRefPubMedGoogle Scholar
  28. 28.
    Damas P, Frippiat F, Ancion A, et al (2015) Prevention of ventilator-associated pneumonia and ventilator-associated conditions: a randomized controlled trial with subglottic secretion suctioning. Crit Care Med 43: 22–30CrossRefPubMedGoogle Scholar
  29. 29.
    Nseir S, Zerimech F, Fournier C, et al (2011) Continuous control of tracheal cuff pressure and microaspiration of gastric contents in critically ill patients. Am J Respir Crit Care Med 184: 1041–7CrossRefPubMedGoogle Scholar
  30. 30.
    Lorente L, Lecuona M, Jiménez A, et al (2014) Continuous endotracheal tube cuff pressure control system protects against ventilator-associated pneumonia. Crit Care 18:R77CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nseir S, Lorente L, Ferrer M, et al (2015) Continuous control of tracheal cuff pressure for VAP prevention: a collaborative metaanalysis of individual participant data. Ann Intensive Care 5: 43CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zanella A, Scaravilli V, Isgrò S, et al (2011) Fluid leakage across tracheal tube cuff, effect of different cuff material, shape, and positive expiratory pressure: a bench-top study. Intensive Care Med 37: 343–7CrossRefPubMedGoogle Scholar
  33. 33.
    Philippart F, Gaudry S, Quinquis L, et al (2015) Randomized intubation with polyurethane or conical cuffs to prevent pneumonia in ventilated patients. Am J Respir Crit Care Med 191: 637–45CrossRefPubMedGoogle Scholar
  34. 34.
    Bouza E, Granda MJP, Hortal J, et al (2013) Pre-emptive broadspectrum treatment for ventilator-associated pneumonia in highrisk patients. Intensive Care Med 39: 1547–55CrossRefPubMedGoogle Scholar
  35. 35.
    Vallés J, Peredo R, Burgueño MJ, et al (2013) Efficacy of singledose antibiotic against early-onset pneumonia in comatose patients who are ventilated. Chest 143: 1219–25CrossRefPubMedGoogle Scholar
  36. 36.
    Tablan OC, Anderson LJ, Besser R, et al (2004) Guidelines for preventing health-care-associated pneumonia, 2003: recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee. MMWR Recomm Rep 53: 1–36PubMedGoogle Scholar
  37. 37.
    Falagas ME, Siempos II, Bliziotis IA, Michalopoulos A (2006) Administration of antibiotics via the respiratory tract for the prevention of ICU-acquired pneumonia: a meta-analysis of comparative trials. Crit Care 10:R123CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Palmer LB, Smaldone GC (2014) Reduction of bacterial resistance with inhaled antibiotics in the intensive care unit. Am J Respir Crit Care Med 189: 1225–33CrossRefPubMedGoogle Scholar
  39. 39.
    Palmer LB, Smaldone GC, Chen JJ, et al (2008) Aerosolized antibiotics and ventilator-associated tracheobronchitis in the intensive care unit. Crit Care Med 36: 2008–13CrossRefPubMedGoogle Scholar
  40. 40.
    Karvouniaris M, Makris D, Zygoulis P, et al (2015) Nebulised colistin for ventilator-associated pneumonia prevention. Eur Respir J 46: 1732–9CrossRefPubMedGoogle Scholar
  41. 41.
    Nseir S, Ader F, Marquette CH (2009) Nosocomial tracheobronchitis. Curr Opin Infect Dis 22: 148–53CrossRefPubMedGoogle Scholar
  42. 42.
    Nseir S, Favory R, Jozefowicz E, et al (2008) Antimicrobial treatment for ventilator-associated tracheobronchitis: a randomized, controlled, multicenter study. Crit Care 12:R62CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Nseir S, Martin-Loeches I, Makris D, et al (2014) Impact of appropriate antimicrobial treatment on transition from ventilatorassociated tracheobronchitis to ventilator-associated pneumonia. Crit Care 18:R129CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Martin-Loeches I, Povoa P, Rodríguez A, et al (2015) Incidence and prognosis of ventilator-associated tracheobronchitis (TAVeM): a multicentre, prospective, observational study. Lancet Respir Med 3: 859–68CrossRefPubMedGoogle Scholar
  45. 45.
    Chan EY, Ruest A, Meade MO, Cook DJ (2007) Oral decontamination for prevention of pneumonia in mechanically ventilated adults: systematic review and meta-analysis. BMJ 334: 889CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Labeau SO, Van de Vyver K, Brusselaers N, et al (2011) Prevention of ventilator-associated pneumonia with oral antiseptics: a systematic review and meta-analysis. Lancet Infect Dis 11: 845–54CrossRefPubMedGoogle Scholar
  47. 47.
    Klompas M, Speck K, Howell MD, et al (2014) Reappraisal of routine oral care with chlorhexidine gluconate for patients receiving mechanical ventilation: systematic review and metaanalysis. JAMA Intern Med 174: 751–61CrossRefPubMedGoogle Scholar
  48. 48.
    Vonberg RP, Eckmanns T, Welte T, Gastmeier P (2006) Impact of the suctioning system (open versus closed) on the incidence of ventilation-associated pneumonia: meta-analysis of randomized controlled trials. Intensive Care Med 32: 1329–35CrossRefPubMedGoogle Scholar
  49. 49.
    Jongerden IP, Rovers MM, Grypdonck MH, Bonten MJ (2007) Open and closed endotracheal suction systems in mechanically ventilated intensive care patients: a meta-analysis. Crit Care Med 35: 260–70CrossRefPubMedGoogle Scholar
  50. 50.
    Siempos II, Vardakas KZ, Falagas ME (2008) Closed tracheal suction systems for prevention of ventilator-associated pneumonia. Br J Anaesth 100: 299–306CrossRefPubMedGoogle Scholar
  51. 51.
    Kuriyama A, Umakoshi N, Fujinaga J, Takada T (2015) Impact of closed versus open tracheal suctioning systems for mechanically ventilated adults: a systematic review and meta-analysis. Intensive Care Med 41: 402–11CrossRefPubMedGoogle Scholar
  52. 52.
    Morrow LE, Kollef MH, Casale TB (2010) Probiotic prophylaxis of ventilator-associated pneumonia: a blinded, randomized, controlled trial. Am J Respir Crit Care Med 182: 1058–64CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Isakow W, Morrow LE, Kollef MH (2007) Probiotics for preventing and treating nosocomial infections: review of current evidence and recommendations. Chest 132: 286–94CrossRefPubMedGoogle Scholar
  54. 54.
    Bo L, Li J, Tao T, et al (2014) Probiotics for preventing ventilatorassociated pneumonia. Cochrane Database Syst Rev 10:CD009066PubMedPubMedCentralGoogle Scholar
  55. 55.
    Palmer LB (2009) Aerosolized antibiotics in critically ill ventilated patients. Curr Opin Crit Care 15: 413–8CrossRefPubMedGoogle Scholar
  56. 56.
    Kollef MH, Hamilton CW, Montgomery AB (2013) Aerosolized antibiotics: do they add to the treatment of pneumonia? Curr Opin Infect Dis 26: 538–44CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ioannidou E, Siempos II, Falagas ME (2007) Administration of antimicrobials via the respiratory tract for the treatment of patients with nosocomial pneumonia: a meta-analysis. J Antimicrob Chemother 60: 1216–26CrossRefPubMedGoogle Scholar
  58. 58.
    Rattanaumpawan P, Lorsutthitham J, Ungprasert P, et al (2010) Randomized controlled trial of nebulized colistimethate sodium as adjunctive therapy of ventilator-associated pneumonia caused by Gram-negative bacteria. J Antimicrob Chemother 65: 2645–9CrossRefPubMedGoogle Scholar
  59. 59.
    Valachis A, Samonis G, Kofteridis DP (2015) The role of aerosolized colistin in the treatment of ventilator-associated pneumonia: a systematic review and metaanalysis. Crit Care Med 43: 527–33CrossRefPubMedGoogle Scholar
  60. 60.
    Zampieri FG, Nassar AP, Gusmao-Flores D, et al (2015) Nebulized antibiotics for ventilator-associated pneumonia: a systematic review and meta-analysis. Crit Care 19: 150CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Société de réanimation de langue française (SRLF) and Springer-Verlag France 2016

Authors and Affiliations

  • E. Jaillette
    • 1
  • G. Ledoux
    • 1
  • R. Lawson
    • 1
  • B. Misset
    • 2
    • 3
  • S. Nseir
    • 1
    • 4
  1. 1.Centre de réanimationCHU de LilleLilleFrance
  2. 2.Service de médecine intensive et réanimationgroupe hospitalier Paris–Saint-JosephParisFrance
  3. 3.Université Paris-DescartesParisFrance
  4. 4.Université de LilleLilleFrance

Personalised recommendations