Advertisement

Médecine Intensive Réanimation

, Volume 25, Issue 5, pp 464–474 | Cite as

Syndrome post-arrêt cardiaque

  • G. Geri
  • A. Cariou
Mise au Point / Update
  • 458 Downloads

Résumé

Le syndrome post-arrêt cardiaque (AC) regroupe l’ensemble des phénomènes survenant après la restauration d’une activité cardiaque efficace par la réanimation cardiopulmonaire. Schématiquement, il se compose d’une défaillance d’organes précoce d’une part et d’un dommage neurologique anoxique d’autre part. Les défaillances d’organe peuvent être multiples, mais la défaillance hémodynamique (vasoplégique et/ou cardiogénique) est la plus fréquente. L’intensité de ces défaillances est extrêmement variable, difficile à prévoir, et peut conduire rapidement à un état de défaillance multiviscérale réfractaire. Le dommage neurologique anoxique s’exprime lui aussi de manière variable, mais peut aboutir à la constitution d’un état végétatif ou paucirelationnel et parfois à la mort encéphalique. Le support d’organes non spécifique est la règle, tant que le pronostic neurologique ne peut pas être formellement évalué. La recherche et le traitement du facteur déclenchant (et notamment d’une occlusion coronaire) sont essentiels. Concernant la neuroprotection, le contrôle ciblé de la température est à ce jour le seul traitement validé, tous les autres restant du domaine de la recherche clinique. Malgré des progrès récents, le taux de mortalité du syndrome post-AC reste très élevé et s’échelonne entre 60 et 90 %.

Mots clés

Arrêt cardiaque Syndrome post-arrêt cardiaque Contrôle ciblé de la température 

Post-cardiac arrest syndrome

Abstract

Post-resuscitation syndrome gathers data on patients who regain spontaneous circulation after cardiac arrest. Two conditions are common after cardiac arrest: early organ failure and anoxic brain injury. Organ failure may be multiple, but hemodynamic failure (due to vasoplegia and/or myocardic dysfunction) is the most commonly observed feature associated with post-cardiac arrest. Severity of such organ failure is extremely variable but may lead to refractory multi-organ failure. Anoxic brain injury may lead not only to memory disturbances but also vegetative state. Brain death occurs in about 7% of cases. Treatment of post-resuscitation syndrome involves standard procedures of organ failures treatment. The condition that triggers cardiac arrest (especially a culprit coronary occlusion) should be immediately diagnosed and treated. Targeted temperature management is the only treatment with enough evidence to be used in daily practice. However, the mortality rate in intensive care unit patients remains very high, occurring in 60% of cases.

Keywords

Cardiac arrest Post-resuscitation shock Targeted temperature management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Atwood C, Eisenberg MS, Herlitz J, Rea TD (2005) Incidence of EMS-treated out-of-hospital cardiac arrest in Europe. Resuscitation 67:75–80CrossRefPubMedGoogle Scholar
  2. 2.
    Mozaffarian D, Benjamin EJ, Go AS, et al (2015) Heart disease and stroke statistics — 2015 update: a report from the American Heart Association. Circulation 131:e29–e322CrossRefGoogle Scholar
  3. 3.
    Bougouin W, Lamhaut L, Marijon E, et al (2014) Characteristics and prognosis of sudden cardiac death in Greater Paris. Intensive Care Med 40:846–54CrossRefPubMedGoogle Scholar
  4. 4.
    Lemiale V, Dumas F, Mongardon N, et al (2013) Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med 39:1972–80CrossRefPubMedGoogle Scholar
  5. 5.
    Negovsky VA (1972) The second step in resuscitation — the treatment of the “post-resuscitation”disease. Resuscitation 1; 1–7CrossRefPubMedGoogle Scholar
  6. 6.
    Eltzschig HK, Eckle T (2011) Ischemia and reperfusion — from mechanism to translation. Nat Med 17:1391–401CrossRefPubMedGoogle Scholar
  7. 7.
    Adrie C, Adib-Conquy M, Laurent I, et al (2002) Successful cardiopulmonary resuscitation after cardiac arrest as a “sepsis-like” syndrome. Circulation 106:562–8CrossRefPubMedGoogle Scholar
  8. 8.
    Adrie C, Monchi M, Laurent I, et al (2005) Coagulopathy after successful cardiopulmonary resuscitation following cardiac arrest: implication of the protein C anticoagulant pathway. JACC 46:21–8CrossRefPubMedGoogle Scholar
  9. 9.
    Grimaldi D, Guivarch E, Neveux N, et al (2013) Markers of intestinal injury are associated with endotoxemia in successfully resuscitated patients. Resuscitation 84:60–5CrossRefPubMedGoogle Scholar
  10. 10.
    Grimaldi D, Sauneuf B, Guivarch E, et al (2015) High level of endotoxemia following out-of-hospital cardiac arrest is associated with severity and duration of postcardiac arrest shock. Crit Care Med 43:2597–604CrossRefPubMedGoogle Scholar
  11. 11.
    Laurent I, Monchi M, Chiche JD, et al (2002) Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. JACC 40:2110–2116.CrossRefPubMedGoogle Scholar
  12. 12.
    Schmidt-Schweda S, Ohler A, Post H, Pieske B (2013) Moderate hypothermia for severe cardiogenic shock (COOL Shock Study I & II). Resuscitation 84:319–25CrossRefPubMedGoogle Scholar
  13. 13.
    Ruiz-Bailén M, Aguayo de Hoyos E, Ruiz-Navarro S, et al (2005) Reversible myocardial dysfunction after cardiopulmonary resuscitation. Resuscitation 66:175–81CrossRefPubMedGoogle Scholar
  14. 14.
    Kern KB, Hilwig RW, Rhee KH, Berg RA (1996) Myocardial dysfunction after resuscitation from cardiac arrest: an example of global myocardial stunning. JACC 28:232–40CrossRefPubMedGoogle Scholar
  15. 15.
    Deantonio HJ, Kaul S, Lerman BB (1990) Reversible myocardial depression in survivors of cardiac arrest. Pacing Clin Electrophysiol 13:982–5CrossRefPubMedGoogle Scholar
  16. 16.
    Fries M, Weil MH, Chang YT, et al (2006) Microcirculation during cardiac arrest and resuscitation. Crit Care Med 34:S454–S7CrossRefPubMedGoogle Scholar
  17. 17.
    Bougouin W, Cariou A (2013) Management of postcardiac arrest myocardial dysfunction. Curr Opin Crit Care 19:195–201CrossRefPubMedGoogle Scholar
  18. 18.
    Tang W, Weil MH, Sun S, et al (1995) Epinephrine increases the severity of postresuscitation myocardial dysfunction. circulation 92:3089–93CrossRefPubMedGoogle Scholar
  19. 19.
    Gazmuri RJ (2000) Effects of repetitive electrical shocks on postresuscitation myocardial function. Crit Care Med 28:N228–N32CrossRefPubMedGoogle Scholar
  20. 20.
    Mattana J, Singhal PC (1992) Determinants of elevated creatine kinase activity and creatine kinase MB-fraction following cardiopulmonary resuscitation. Chest 101:1386–92CrossRefPubMedGoogle Scholar
  21. 21.
    Kern KB, Hilwig RW, Berg RA, et al (1997) Postresuscitation left ventricular systolic and diastolic dysfunction: treatment with dobutamine. Circulation 95:2610–3CrossRefPubMedGoogle Scholar
  22. 22.
    Huang L, Weil MH, Tang W, et al (2005) Comparison between dobutamine and levosimendan for management of postresuscitation myocardial dysfunction. Crit Care Med 33:487–91CrossRefPubMedGoogle Scholar
  23. 23.
    Kakavas S, Chalkias A, Xanthos T (2011) Vasoactive support in the optimization of post-cardiac arrest hemodynamic status: from pharmacology to clinical practice. Eur J Pharmacol 667:32–40CrossRefPubMedGoogle Scholar
  24. 24.
    Manzo-Silberman S, Fichet J, Mathonnet A, et al (2013) Percutaneous left ventricular assistance in post cardiac arrest shock: comparison of intra aortic blood pump and IMPELLA Recover LP2.5. Resuscitation 84:609–15CrossRefPubMedGoogle Scholar
  25. 25.
    Tsai MS, Barbut D, Tang W, et al (2008) Rapid head cooling initiated coincident with cardiopulmonary resuscitation improves success of defibrillation and post-resuscitation myocardial function in a porcine model of prolonged cardiac arrest. J Am Coll Cardiol 51:1988–90. doi:  10.1016/j.jacc.2007.12.057 CrossRefPubMedGoogle Scholar
  26. 26.
    Hsu CY, Huang CH, Chang WT, et al (2009) Cardioprotective effect of therapeutic hypothermia for postresuscitation myocardial dysfunction. Shock 32:210–6CrossRefPubMedGoogle Scholar
  27. 27.
    Skulec R, Kovarnik T, Dostalova G, et al (2008) Induction of mild hypothermia in cardiac arrest survivors presenting with cardiogenic shock syndrome. Acta Anaesthesiol Scand 52:188–94CrossRefPubMedGoogle Scholar
  28. 28.
    Nielsen N, Wetterslev J, Cronberg T, et al (2013) Targeted temperature management at 33 °C versus 36 °C after cardiac arrest. N Engl J Med 369:2197–206CrossRefPubMedGoogle Scholar
  29. 29.
    Bro-Jeppesen J, Annborn M, Hassager C, et al (2015) Hemodynamics and vasopressor support during targeted temperature management at 33 °C versus 36 °C after out-of-hospital cardiac arrest: a post hoc study of the target temperature management trial*. Crit Care Med 43:318–27CrossRefPubMedGoogle Scholar
  30. 30.
    Bro-Jeppesen J, Hassager C, Wanscher M, et al (2014) Targeted temperature management at 33 °C versus 36 °C and impact on systemic vascular resistance and myocardial function after out-of-hospital cardiac arrest: a sub-study of the Target Temperature Management Trial. Circulation. Circ Cardiovasc Interv 7:663–72CrossRefGoogle Scholar
  31. 31.
    Geri G, Guillemet L, Dumas F, et al (2015) Acute kidney injury after out-of-hospital cardiac arrest: risk factors and prognosis in a large cohort. Intensive Care Med 41:1273–80CrossRefPubMedGoogle Scholar
  32. 32.
    Yanta J, Guyette FX, Doshi AA, et al (2013) Renal dysfunction is common following resuscitation from out-of-hospital cardiac arrest. Resuscitation 84:1371–4CrossRefPubMedGoogle Scholar
  33. 33.
    Oh SH, Kim HJ, Park KN, et al (2015) Hypoxic hepatitis in survivors of out-of-hospital cardiac arrest. Am J Emerg Med. 33:1166–70CrossRefPubMedGoogle Scholar
  34. 34.
    Pène F, Hyvernat H, Mallet V, et al (2005) Prognostic value of relative adrenal insufficiency after out-of-hospital cardiac arrest. Intensive Care Med 31:627–33CrossRefPubMedGoogle Scholar
  35. 35.
    Laver S, Farrow C, Turner D, Nolan J (2004) Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med 30:2126–8CrossRefPubMedGoogle Scholar
  36. 36.
    Busl KM, Greer DM (2010) Hypoxic-ischemic brain injury: pathophysiology, neuropathology and mechanisms. NeuroRehabilitation 26:5–13PubMedGoogle Scholar
  37. 37.
    Hoxworth JM, Xu K, Zhou Y, et al (1999) Cerebral metabolic profile, selective neuron loss, and survival of acute and chronic hyperglycemic rats following cardiac arrest and resuscitation. Brain Res 821:467–79CrossRefPubMedGoogle Scholar
  38. 38.
    Lemiale V, Huet O, Vigué B, et al (2008) Changes in cerebral blood flow and oxygen extraction during post-resuscitation syndrome. Resuscitation 76:17–24CrossRefPubMedGoogle Scholar
  39. 39.
    Böttiger BW, Schmitz B, Wiessner C, et al (1998) Neuronal stress response and neuronal cell damage after cardiocirculatory arrest in rats. J Cereb Blood Flow Metab 18:1077–87CrossRefPubMedGoogle Scholar
  40. 40.
    Kawai K, Nitecka L, Ruetzler CA, et al (1992) Global cerebral ischemia associated with cardiac arrest in the rat: I. Dynamics of early neuronal changes. J Cereb Blood Flow Metab 12:238–49CrossRefPubMedGoogle Scholar
  41. 41.
    Vaagenes P, Safar P, Moossy J, et al (1997) Asphyxiation versus ventricular fibrillation cardiac arrest in dogs. Differences in cerebral resuscitation effects — a preliminary study. Resuscitation 35:41–52CrossRefPubMedGoogle Scholar
  42. 42.
    Geri G, Mongardon N, Daviaud F, et al (2014) Neurological consequences of cardiac arrest: where do we stand? Ann Fr Anesth Reanim 33:98–101CrossRefPubMedGoogle Scholar
  43. 43.
    Seder DB, Sunde K, Rubertsson S, et al (2015) Neurologic outcomes and postresuscitation care of patients with myoclonus following cardiac arrest. Crit Care Med 43:965–72CrossRefPubMedGoogle Scholar
  44. 44.
    Adrie C, Haouache H, Saleh M, et al (2008) An underrecognized source of organ donors: patients with brain death after successfully resuscitated cardiac arrest. Intensive Care Med 34:132–7CrossRefPubMedGoogle Scholar
  45. 45.
    Bouwes A, Binnekade JM, Kuiper MA, et al (2012) Prognosis of coma after therapeutic hypothermia: a prospective cohort study. Ann Neurol 71:206–12CrossRefPubMedGoogle Scholar
  46. 46.
    Bernard SA, Gray TW, Buist MD, et al (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346:557–63CrossRefPubMedGoogle Scholar
  47. 47.
    Nolan JP, Soar J, Cariou A, et al (2015) European Resuscitation Council and European Society of Intensive Care Medicine 2015 guidelines for post-resuscitation care. Intensive Care Med 41:2039–56CrossRefPubMedGoogle Scholar
  48. 48.
    Callaway CW, Donnino MW, Fink EL, et al (2015) Part 8: Postcardiac arrest care: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 132:S465–S82CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Morrison LJ, Gent LM, Lang E, et al (2015) Part 2: Evidence evaluation and management of conflicts of interest: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 132:S368–S82CrossRefPubMedGoogle Scholar
  50. 50.
    Williams GR, Spencer FC (1958) The clinical use of hypothermia following cardiac arrest. Ann Surg 148:462–8CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Hypothermia after Cardiac Arrest Study Group (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346:549–56CrossRefGoogle Scholar
  52. 52.
    Nielsen N, Sunde K, Hovdenes J, et al (2011) Adverse events and their relation to mortality in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia. Crit Care Med 39:57–64CrossRefPubMedGoogle Scholar
  53. 53.
    Dumas F, Grimaldi D, Zuber B, et al (2011) Is hypothermia after cardiac arrest effective in both shockable and nonshockable patients? Insights from a large registry. Circulation 123:877–86CrossRefPubMedGoogle Scholar
  54. 54.
    Testori C, Sterz F, Behringer W, et al (2011) Mild therapeutic hypothermia is associated with favourable outcome in patients after cardiac arrest with non-shockable rhythms. Resuscitation 82:1162–7CrossRefPubMedGoogle Scholar
  55. 55.
    Lascarrou JB, Meziani F, Le Gouge A, et al (2015) Therapeutic hypothermia after nonshockable cardiac arrest: the HYPERION multicenter, randomized, controlled, assessor-blinded, superiority trial. Scand J Trauma Resusc Emerg Med 23:26CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Seder DB, Van der Kloot TE (2009) Methods of cooling: practical aspects of therapeutic temperature management. Crit Care Med 37:S211–S22CrossRefPubMedGoogle Scholar
  57. 57.
    Chenoune M, Lidouren F, Adam C, et al (2011) Ultrafast and whole-body cooling with total liquid ventilation induces favorable neurological and cardiac outcomes after cardiac arrest in rabbits. Circulation. 124:901–11, 1–7CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Bouwes A, Robillard LBM, Binnekade JM, et al (2012) The influence of rewarming after therapeutic hypothermia on outcome after cardiac arrest. Resuscitation 83:996–1000CrossRefPubMedGoogle Scholar
  59. 59.
    Cocchi MN, Boone MD, Giberson B, et al (2014) Fever after rewarming: incidence of pyrexia in postcardiac arrest patients who have undergone mild therapeutic hypothermia. J Intensive Care Med 29:365–9CrossRefPubMedGoogle Scholar
  60. 60.
    Farb A, Tang AL, Burke AP, et al (1995) Sudden coronary death. Frequency of active coronary lesions, inactive coronary lesions, and myocardial infarction. Circulation 92:1701–9CrossRefPubMedGoogle Scholar
  61. 61.
    Spaulding CM, Joly LM, Rosenberg A, et al (1997) Immediate coronary angiography in survivors of out-of-hospital cardiac arrest. N Engl J Med 336:1629–33CrossRefPubMedGoogle Scholar
  62. 62.
    Dumas F, Cariou A, Manzo-Silberman S, et al (2010) Immediate percutaneous coronary intervention is associated with better survival after out-of-hospital cardiac arrest: insights from the PROCAT (Parisian region out of hospital cardiac arrest) registry. Circ Cardiovasc Interv 3:200–7CrossRefPubMedGoogle Scholar
  63. 63.
    Dumas F, Manzo-Silberman S, Fichet J, et al (2012) Can early cardiac troponin I measurement help to predict recent coronary occlusion in out-of-hospital cardiac arrest survivors? Crit Care Med 40:1777–84CrossRefPubMedGoogle Scholar
  64. 64.
    Geri G, Mongardon N, Dumas F, et al (2013) Diagnosis performance of high sensitivity troponin assay in out-of-hospital cardiac arrest patients. Int J Cardiol 169:449–54CrossRefPubMedGoogle Scholar
  65. 65.
    Dumas F, White L, Stubbs BA, et al (2012) Long-term prognosis following resuscitation from out of hospital cardiac arrest: role of percutaneous coronary intervention and therapeutic hypothermia. J Am Coll Cardiol 60:21–7CrossRefPubMedGoogle Scholar
  66. 66.
    Geri G, Dumas F, Bougouin W, et al (2015) Immediate percutaneous coronary intervention is associated with improved shortand long-term survival after out-of-hospital cardiac arrest. Circ Cardiovasc Interv 8:e002303CrossRefGoogle Scholar
  67. 67.
    Anyfantakis ZA, Baron G, Aubry P, et al (2009) Acute coronary angiographic findings in survivors of out-of-hospital cardiac arrest. Am Heart J 157:312–8CrossRefPubMedGoogle Scholar
  68. 68.
    Kilgannon JH, Jones AE, Shapiro NI, et al (2010) Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA 303:2165–71CrossRefPubMedGoogle Scholar
  69. 69.
    Vereczki V, Martin E, Rosenthal RE, et al (2006) Normoxic resuscitation after cardiac arrest protects against hippocampal oxidative stress, metabolic dysfunction, and neuronal death. J Cereb Blood Flow Metab 26:821–35CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Zwemer CF, Whitesall SE, D’Alecy LG (1994) Cardiopulmonarycerebral resuscitation with 100% oxygen exacerbates neurological dysfunction following nine minutes of normothermic cardiac arrest in dogs. Resuscitation 27:159–70CrossRefPubMedGoogle Scholar
  71. 71.
    Roberts BW, Kilgannon JH, Chansky ME, et al (2013) Association between postresuscitation partial pressure of arterial carbon dioxide and neurological outcome in patients with post-cardiac arrest syndrome. Circulation 127:2107–13CrossRefPubMedGoogle Scholar
  72. 72.
    Honore PM, Jamez J, Wauthier M, et al (2000) Prospective evaluation of short-term, high-volume isovolemic hemofiltration on the hemodynamic course and outcome in patients with intractable circulatory failure resulting from septic shock. Crit Care Med 28:3581–7CrossRefPubMedGoogle Scholar
  73. 73.
    Laurent I, Adrie C, Vinsonneau C, et al (2005) High-volume hemofiltration after out-of-hospital cardiac arrest. J Am Coll Cardiol 46:432–7CrossRefPubMedGoogle Scholar
  74. 74.
    Sirén AL, Fratelli M, Brines M, et al (2001) Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci USA 98:4044–9CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Cour M, Loufouat J, Paillard M, et al (2011) Inhibition of mitochondrial permeability transition to prevent the post-cardiac arrest syndrome: a pre-clinical study. Eur Heart J 32:226–35CrossRefPubMedGoogle Scholar
  76. 76.
    Tissier R, Hamanaka K, Kuno A, et al (2007) Total liquid ventilation provides ultra-fast cardioprotective cooling. J Am Coll Cardiol 49:601–5CrossRefPubMedGoogle Scholar
  77. 77.
    Kohlhauer M, Lidouren F, Remy-Jouet I, et al (2015) Hypothermic total liquid ventilation is highly protective through cerebral hemodynamic preservation and sepsis-like mitigation after asphyxial cardiac arrest. Crit Care Med 43:e420–e30CrossRefGoogle Scholar
  78. 78.
    Hutin A, Lidouren F, Kohlhauer M, et al (2015) Total liquid ventilation offers ultra-fast and whole-body cooling in large animals in physiological conditions and during cardiac arrest. Resuscitation 93:69–73CrossRefPubMedGoogle Scholar

Copyright information

© Société de réanimation de langue française (SRLF) and Springer-Verlag France 2016

Authors and Affiliations

  1. 1.Service de réanimation médicalehôpital Cochin, AP–HPParisFrance
  2. 2.Inserm UMR970Centre d’expertise de la mort subite de l’adulteParisFrance
  3. 3.Université Paris-DescartesParisFrance

Personalised recommendations