Advertisement

Réanimation

, Volume 23, Supplement 3, pp 543–554 | Cite as

Le dossier médical informatisé en réanimation : objectifs, conception et bénéfices attendus

  • J. -J. Rouby
  • C. Arbelot
  • R. Deransy
  • A. Monsel
  • O. Langeron
  • H. Brisson
Mise au Point / Update
  • 163 Downloads

Résumé

En réanimation, le médecin reçoit quotidiennement une multitude d’informations concernant chaque patient: données cliniques, biologiques, bactériologiques et d’imagerie. Le dossier médical traditionnel « papier » expose à ignorer certaines informations et ne permet pas une synthèse rapide des données disponibles. Le dossier médical informatisé représente une réponse appropriée la gestion de la complexité, ceci à certaines conditions: 1) ne pas simplement « reproduire » la pancarte traditionnelle en affichant des lignes et des colonnes de données numériques; 2) afficher une représentation graphique des principales données cliniques, biologiques, bactériologiques et échographiques recueillies quotidiennement (écran experts); 3) permettre l’affichage graphique sur une échelle de temps variant de la minute (pression artérielle, fréquence cardiaque et respiratoire, SpO2) à 24 heures (autres paramètres); 4) donner un accès rapide à l’imagerie complexe (tomodensitométrie et résonnance magnétique); 5) permettre la prescription médicale sécurisée; 6) permettre la rédaction du compte-rendu d’hospitalisation à partir de l’observation médicale; 7) permettre le codage automatique des actes médicaux; 8) permettre la sélection de patients à partir de mots clés (requête sur la base de données); 9) permettre le fonctionnement en réseau de différentes unités de réanimation et de soins continus. Les données concernant l’impact du dossier médical informatisé sur la morbimortalité, la durée de ventilation et la durée d’hospitalisation sont actuellement peu nombreuses. Compte-tenu de la quasi-impossibilité d’effectuer des études randomisées prospectives, des études rétrospectives castémoins avec un appariement strict des patients sont nécessaires pour évaluer l’impact du dossier médical informatisé sur la qualité des soins en réanimation.

Mots clés

Dossier médical informatisé Réanimation 

Electronic medical record in the intensive care unit : Objectives, conception and expected benefits

Abstract

Physicians in charge of critically ill patients have to deal daily with a huge number of clinical, biological, bacteriological and imaging data. The traditional “paper” medical file put the physician at risk of ignoring some information and does not allow a rapid synthesis to reach the right diagnosis. Electronic medical record (EMR) is an appropriate answer to complexity management under certain conditions: 1) EMR should not be restricted to “difficultto- read” lines and columns of numerical data; 2) The EMR should display graphical representations of main clinical, biological, bacteriological and ultrasound parameters with a large range of time scale (expert screens); 3) A quick and easy access to complex imaging (computerized tomography and magnetic resonance imaging) should be included in the EMR; 4) the EMF should include a computer-assisted physician order entry and an electronic medication administration record; 5) the final report concerning the patient leaving or deceased in the ICU should be easily obtained from daily medical records; 6) The coding of medical acts should be performed by completing a specific data form of the EMR; 7) the EMR should allow the selection of series of patients (request from the data base); 8) the EMR shared by several ICUs enables network functioning. Impact of EMR on mortality, ICU length of stay and duration of mechanical ventilation is poorly documented but existing data suggest a benefit. As it is virtually impossible to design multicenter randomized controlled studies, retrospective case-control studies with a tight matching between patients are required.

Keywords

Keywords Electronic medical record Intensive care unit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Rosenfeld BA, Dorman T, Breslow MJ, et al (2000) Intensive care unit telemedicine: alternate paradigm for providing continuous intensivist care. Crit Care Med 28:3925–31CrossRefPubMedGoogle Scholar
  2. 2.
    Kruklitis RJ, Tracy JA, McCambridge MM, et al (2014) Clinical and financial considerations for implementing an ICU telemedicine program. Chest 145:1392–6CrossRefPubMedGoogle Scholar
  3. 3.
    Girbes AR, Vroom MB (2014) Telemedicine in Dutch intensive care. Ned Tijdschr Geneeskd 158:A8493Google Scholar
  4. 4.
    Lilly CM, Zubrow MT, Kempner KM, et al (2014) Critical care telemedicine: evolution and state of the art. Crit Care Med 42:2429–36CrossRefPubMedGoogle Scholar
  5. 5.
    Kumar G, Merchant S, Reynolds R (2013) Tele-ICU: Efficacy and Cost-Effectiveness Approach of Remotely Managing the Critical Care. Open Med Inform J 6:24–9CrossRefGoogle Scholar
  6. 6.
    Young LB, Chan PS, Lu X, et al (2011) Impact of telemedicine intensive care unit coverage on patient outcomes: a systematic review and meta-analysis. Arch Intern Med 171:498–506CrossRefPubMedGoogle Scholar
  7. 7.
    Wilcox ME, Adhikari NK (2012) The effect of telemedicine in critically ill patients: systematic review and meta-analysis. Crit Care 16:R127Google Scholar
  8. 8.
    Kumar G, Falk DM, Bonello RS, et al (2013) The costs of critical care telemedicine programs: a systematic review and analysis. Chest 143:19–29CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Girbes AR, Vroom MB (2014) A limited role for telemedicine on the Dutch intensive care. Ned Tijdschr Geneeskd 158:A8608Google Scholar
  10. 10.
    Manor-Shulman O, Beyene J, Frndova H, et al (2008) Quantifying the volume of documented clinical information in critical illness. J Crit Care 23:245–50CrossRefPubMedGoogle Scholar
  11. 11.
    Mack EH, Wheeler DS, Embi PJ (2009) Clinical decision support systems in the pediatric intensive care unit. Pediatr Crit Care Med 10:23–8CrossRefPubMedGoogle Scholar
  12. 12.
    Pickering BW, Gajic O, Ahmed A, et al (2013) Data utilization for medical decision making at the time of patient admission to ICU. Crit Care Med 41:1502–10CrossRefPubMedGoogle Scholar
  13. 13.
    Pickering BW, Herasevich V, Ahmed A, et al (2010) Novel Representation of Clinical Information in the ICU: Developing User Interfaces which Reduce Information Overload. Appl Clin Inform 28:116–31CrossRefGoogle Scholar
  14. 14.
    Zhang J, Patel VL, Johnson TR, et al (2005) Evaluating and Predicting Patient Safety for Medical Devices with Integral Information Technology. In: Henriksen K, Battles JB, Marks ES, Lewin DI, editors. Advances in Patient Safety: From Research to Implementation (Volume 2: Concepts and Methodology). Rockville (MD): Agency for Healthcare Research and Quality (US)Google Scholar
  15. 15.
    Middleton B, Bloomrosen M, Dente MA, et al (2013) Enhancing patient safety and quality of care by improving the usability of electronic health record systems: recommendations from AMIA. J Am Med Inform Assoc 20:e2–8CrossRefGoogle Scholar
  16. 16.
    Ellsworth MA, Lang TR, Pickering BW, et al (2014) Clinical data needs in the neonatal intensive care unit electronic medical record. BMC Med Inform Decis Mak 14:92CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Herasevich V, Ellsworth MA, Hebl JR, et al (2014) Information needs for the OR and PACU electronic medical record. Appl Clin Inform 5:630–41CrossRefPubMedGoogle Scholar
  18. 18.
    Futier E, Constantin JM, Paugam-Burtz C, et al (2013) IMPROVE Study Group. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med 369:428–37CrossRefPubMedGoogle Scholar
  19. 19.
    2000) The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–8Google Scholar
  20. 20.
    Ognjen G., Saqib I, Dara, Jose L, et al (2004) Ventilatorassociated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med 32:1817–24CrossRefGoogle Scholar
  21. 21.
    Determann RM, Royakkers A, Wolthuis EK, et al (2010) Ventilation with lower tidal volumes as compared to conventional tidal volumes for patients without acute lung injury - A preventive randomized controlled trial. Crit Care 14:R1Google Scholar
  22. 22.
    Serpa Neto A, Simonis FD, Barbas CS, et al (2014) Association between tidal volume size, duration of ventilation, and sedation needs in patients without acute respiratory distress syndrome: an individual patient data meta-analysis. Intensive Care Med 40:950–7CrossRefPubMedGoogle Scholar
  23. 23.
    Bouhemad B, Brisson H, Le-Guen M, et al (2011) Bedside ultrasound assessment of positive end-expiratory pressure-induced lung recruitment. Am J Respir Crit Care Med 183:341–7CrossRefPubMedGoogle Scholar
  24. 24.
    Soummer A, Perbet S, Brisson H, et al (2012) Ultrasound assessment of lung aeration loss during a successful weaning trial predicts postextubation distress. Crit Care Med 40:2064–72CrossRefPubMedGoogle Scholar
  25. 25.
    McCambridge M, Jones K, Paxton H, et al (2010) Association of health information technology and teleintensivist coverage with decreased mortality and ventilator use in critically ill patients. Arch Intern Med 170:648–53CrossRefPubMedGoogle Scholar
  26. 26.
    Levesque E, Hoti E, Azoulay D, et al (2014) The implementation of an Intensive Care Information System allows shortening the ICU length of stay. J Clin Monit Comput [in press]Google Scholar
  27. 27.
    Cheung A, van Velden FH, Lagerburg V, et al (2015) The organizational and clinical impact of integrating bedside equipment to an information system: A systematic literature review of patient data management systems (PDMS). Int J Med Inform 4:155–65CrossRefGoogle Scholar
  28. 28.
    Gajic O, Herasevich V, Hubmayr RD (2010) Will the electronic medical record live up to its promise? Am J Respir Crit Care Med 182:585–6CrossRefPubMedGoogle Scholar
  29. 29.
    Ahmed A, Chandra S, Herasevich V, et al (2011) The effect of two different electronic health record user interfaces on intensive care provider task load, errors of cognition, and performance. Crit Care Med 39:1626–34CrossRefPubMedGoogle Scholar
  30. 30.
    Pickering BW, Dong Y, Ahmed A, et al (2015) The implementation of clinician designed, human-centered electronic medical record viewer in the intensive care unit: A pilot step-wedge cluster randomized trial. Int J Med Inform [in press]Google Scholar
  31. 31.
    Thongprayoon C, Harrison AM, O’Horo JC, et al (2014) The Effect of an Electronic Checklist on Critical Care Provider Workload, Errors, and Performance. J Intensive Care Med [in press]Google Scholar
  32. 32.
    Reilly JS, McCoubrey J, Cole S, et al (2014) Integrating intensive care unit (ICU) surveillance into an ICU clinical care electronic system. J Hosp Infect [in press]Google Scholar
  33. 33.
    Boord JB, Sharifi M, Greevy RA, et al (2007) Computer-based insulin infusion protocol improves glycemia control over manual protocol. J Am Med Inform Assoc 14:278–87CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Hum RS, Cato K, Sheehan B, Patel S, et al (2014) Developing clinical decision support within a commercial electronic health record system to improve antimicrobial prescribing in the neonatal ICU. Appl Clin Inform 5:368–87CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Berger MM, Revelly JP, Wasserfallen JB, et al (2006) Impact of a computerized information system on quality of nutritional support in the ICU. Nutrition 22:221–9CrossRefPubMedGoogle Scholar
  36. 36.
    Alsolamy S, Al Salamah M, Al Thagafi M, et al (2014) Diagnostic accuracy of a screening electronic alert tool for severe sepsis and septic shock in the emergency department. BMC Med Inform Decis Mak 14:105CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Levesque E, Hoti E, deLa Serna S, et al (2013) The positive financial impact of using an Intensive Care Information System in a tertiary intensive care unit. Int J Med Inform 82:177–84CrossRefPubMedGoogle Scholar
  38. 38.
    Wong DH, Gallegos Y, Weinger MB, et al (2003) Changes in intensive care unit nurse task activity after installation of a third-generation intensive care unit information system. Crit Care Med 31:2488–94CrossRefPubMedGoogle Scholar
  39. 39.
    Morrison C, Jones M, Blackwell A, et al (2008) Electronic patient record use during ward rounds: a qualitative study of interaction between medical staff. Crit Care 12: R148Google Scholar
  40. 40.
    Mador RL, Shaw NT (2009) The impact of a Critical Care Information System (CCIS) on time spent charting and in direct patient care by staff in the ICU: a review of the literature. Int J Med Inform 78:435–45CrossRefPubMedGoogle Scholar
  41. 41.
    Finlay HE, Cassorla L, Feiner J, et al (2005) Designing and testing a computer-based screening system for transfusion-related acute lung injury. Am J Clin Pathol 124:1–9CrossRefGoogle Scholar
  42. 42.
    Herasevich V, Yilmaz M, Khan H, et al (2009) Validation of an electronic surveillance system for acute lung injury. Intensive Care Med 35:1018–23CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Herasevich V, Pickering BW, Dong Y, et al (2010) Informatics infrastructure for syndrome surveillance, decision support, reporting, and modeling of critical illness. Mayo Clin Proc 85:247–54CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Alsara A, Warner DO, Li G, et al (2011) Derivation and validation of automated electronic search strategies to identify pertinent risk factors for postoperative acute lung injury. Mayo Clin Proc 86:382–8CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Smischney NJ, Velagapudi VM, Onigkeit JA, et al (2014) Derivation and validation of a search algorithm to retrospectively identify mechanical ventilation initiation in the intensive care unit. BMC Med Inform Decis Mak 14:55CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Société de réanimation de langue française (SRLF) and Springer-Verlag France 2015

Authors and Affiliations

  • J. -J. Rouby
    • 1
  • C. Arbelot
    • 1
  • R. Deransy
    • 1
  • A. Monsel
    • 1
  • O. Langeron
    • 1
  • H. Brisson
    • 1
  1. 1.Service de réanimation polyvalente, département d’anesthésie-réanimation polyvalentehôpital de la Pitié-SalpêtrièreParisFrance

Personalised recommendations