Réanimation

, Volume 23, Issue 4, pp 412–419 | Cite as

Stress et strain : application au cours du syndrome de détresse respiratoire aiguë

Mise au Point / Update

Résumé

Le stress (ou tension) appliqué au parenchyme pulmonaire lors de la ventilation mécanique correspond à la pression transpulmonaire maximale, différence entre pression alvéolaire et pression pleurale en fin d’inspiration. Le strain (ou déformation) est l’augmentation de volume audessus de la capacité résiduelle fonctionnelle (CRF) rapportée à cette même CRF. Stress et strain sont liés par un facteur de proportionnalité, l’élastance spécifique du poumon qui semble être constant dans une large gamme de stress et ne semble pas être modifié au cours du syndrome de détresse respiratoire aiguë (SDRA). Le concept de stress et strain illustre bien les limites des paramètres actuellement utilisés dans l’adaptation des réglages du respirateur au cours du SDRA tels que pression de plateau et poids prédit. Cependant, l’hétérogénéité de distribution de l’aération et le phénomène de recrutement sont des limites importantes à l’application du concept de stress et strain pour le réglage individualisé du respirateur au cours du SDRA.

Mots clés

Lésions pulmonaires induites par la ventilation Tension Déformation Ventilation protectrice Pression transpulmonaire Syndrome de détresse respiratoire aiguë 

Stress and strain in acute respiratory distress syndrome

Abstract

During mechanical ventilation, stress applied to the lung parenchyma is directly related to maximal transpulmonary pressure, which is computed as the difference between end inspiratory alveolar and pleural pressures. Strain refers to the lung parenchyma deformation and is computed as the ratio of volume increase above functional residual capacity (FRC) over FRC itself. The relationship between stress and strain is proportional. The factor of proportionality between stress and strain is the specific lung elastance, which seems to be constant for a large stress range and not to be altered in case of acute respiratory distress syndrome (ARDS). The stress and strain concept underlines the limitations of the standard parameters (plateau pressure and predicted body weight) used to adapt the ventilator settings in ARDS patients. However, lung heterogeneity during ARDS and the occurrence of lung recruitment are important limitations to the use of the stress and strain concept to individually adapt the ventilator settings at the bedside in ARDS patients.

Keywords

Ventilator-induced lung injuries Stress Strain Lung protective ventilation Transpulmonary pressure Acute respiratory distress syndrome 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 342:1301–8Google Scholar
  2. 2.
    Gattinoni L, Carlesso E, Cadringher P, et al (2003) Physical and biological triggers of ventilator-induced lung injury and its prevention. Eur Respir J Suppl 47:15s–25sGoogle Scholar
  3. 3.
    Gattinoni L, Protti A, Caironi P, et al (2010) Ventilator-induced lung injury: the anatomical and physiological framework. Crit Care Med 38:S539–S48CrossRefGoogle Scholar
  4. 4.
    Plataki M, Hubmayr RD (2010) The physical basis of ventilatorinduced lung injury. Expert Rev Respir Med 4:373–85CrossRefGoogle Scholar
  5. 5.
    Gattinoni L, Carlesso E, Caironi P (2012) Stress and strain within the lung. Curr Opin Crit Care 18:42–7PubMedCrossRefGoogle Scholar
  6. 6.
    Weibel ER (1986) Functional morphology of lung parenchyma. In: Waverly (ed) Handbook of physiology a critical, comprehensive presentation of physiological knowledge and concepts. Baltimore, pp 89–111Google Scholar
  7. 7.
    Akoumianaki E, Maggiore SM, Valenza F, et al (2014) The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med 189:520–31PubMedGoogle Scholar
  8. 8.
    Loring SH, O’Donnell CR, Behazin N, et al (2010) Esophageal pressures in acute lung injury: do they represent artifact or useful information about transpulmonary pressure, chest wall mechanics, and lung stress? J Appl Physiol (1985) 108:515–22PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Chiumello D, Carlesso E, Cadringher P, et al (2008) Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 178:346–55PubMedGoogle Scholar
  10. 10.
    Mentzelopoulos SD, Roussos C, Zakynthinos SG (2005) Prone position reduces lung stress and strain in severe acute respiratory distress syndrome. Eur Respir J 25:534–44PubMedCrossRefGoogle Scholar
  11. 11.
    Brunner JX, Wysocki M (2009) Is there an optimal breath pattern to minimize stress and strain during mechanical ventilation? Intensive Care Med 35:1479–83PubMedCrossRefGoogle Scholar
  12. 12.
    Gattinoni L, Carlesso E, Caironi P (2012) Stress and strain within the lung. Curr Opin Crit Care 18:42–7PubMedCrossRefGoogle Scholar
  13. 13.
    Olegard C, Sondergaard S, Houltz E, et al (2005) Estimation of functional residual capacity at the bedside using standard monitoring equipment: a modified nitrogen washout/washin technique requiring a small change of the inspired oxygen fraction. Anesth Analg 101:206–12, table of contentsPubMedCrossRefGoogle Scholar
  14. 14.
    Dellamonica J, Lerolle N, Sargentini C, et al (2011) Accuracy and precision of end-expiratory lung-volume measurements by automated nitrogen washout/washin technique in patients with acute respiratory distress syndrome. Crit Care 15:R294CrossRefGoogle Scholar
  15. 15.
    Pugin J, Dunn I, Jolliet P, et al (1998) Activation of human macrophages by mechanical ventilation in vitro. Am J Physiol 275:L1040–L50PubMedGoogle Scholar
  16. 16.
    Dos Santos CC, Slutsky AS (2000) Invited review: mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol (1985) 89:1645–55PubMedGoogle Scholar
  17. 17.
    Vlahakis NE, Hubmayr RD (2000) Invited review: plasma membrane stress failure in alveolar epithelial cells. J Appl Physiol (1985) 89:2490–6; discussion 2497PubMedGoogle Scholar
  18. 18.
    Uhlig S (2002) Ventilation-induced lung injury and mechanotransduction: stretching it too far? Am J Physiol Lung Cell Mol Physiol 282:L892–L6PubMedGoogle Scholar
  19. 19.
    Liu M, Tanswell AK, Post M (1999) Mechanical force-induced signal transduction in lung cells. Am J Physiol 277:L667–L83PubMedGoogle Scholar
  20. 20.
    Vlahakis NE, Schroeder MA, Limper AH, et al (1999) Stretch induces cytokine release by alveolar epithelial cells in vitro. Am J Physiol 277:L167–L73PubMedGoogle Scholar
  21. 21.
    Yamamoto H, Teramoto H, Uetani K, et al (2002) Cyclic stretch upregulates interleukin-8 and transforming growth factor-beta1 production through a protein kinase C-dependent pathway in alveolar epithelial cells. Respirology 7:103–9PubMedCrossRefGoogle Scholar
  22. 22.
    Ranieri VM, Suter PM, Tortorella C, et al (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282:54–61PubMedCrossRefGoogle Scholar
  23. 23.
    Caironi P, Langer T, Carlesso E, et al (2011) Time to generate ventilator-induced lung injury among mammals with healthy lungs: a unifying hypothesis. Intensive Care Med 37:1913–20PubMedCrossRefGoogle Scholar
  24. 24.
    Protti A, Cressoni M, Santini A, et al (2011) Lung stress and strain during mechanical ventilation: any safe threshold? Am J Respir Crit Care Med 183:1354–62PubMedGoogle Scholar
  25. 25.
    Valenza F, Guglielmi M, Maffioletti M, et al (2005) Prone position delays the progression of ventilator-induced lung injury in rats: does lung strain distribution play a role? Crit Care Med 33:361–7PubMedCrossRefGoogle Scholar
  26. 26.
    Perchiazzi G, Rylander C, Vena A, et al (2011) Lung regional stress and strain as a function of posture and ventilatory mode. J Appl Physiol (1985) 110:1374–83PubMedCrossRefGoogle Scholar
  27. 27.
    Brower RG, Hubmayr RD, Slutsky AS (2008) Lung stress and strain in acute respiratory distress syndrome: good ideas for clinical management? Am J Respir Crit Care Med 178:323–4PubMedGoogle Scholar
  28. 28.
    Guérin C, Reignier J, Richard JC, et al (2013) Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 368:2159–68PubMedCrossRefGoogle Scholar
  29. 29.
    Gattinoni L, Pesenti A (2005) The concept of “baby lung”. Intensive Care Med 31:776–784PubMedCrossRefGoogle Scholar
  30. 30.
    Dellamonica J, Lerolle N, Sargentini C, et al (2011) PEEPinduced changes in lung volume in acute respiratory distress syndrome. Two methods to estimate alveolar recruitment. Intensive Care Med 37:1595–604PubMedCrossRefGoogle Scholar
  31. 31.
    Hubmayr RD (2010) Is there a place for esophageal manometry in the care of patients with injured lungs? J Appl Physiol (1985) 108:481–2PubMedCrossRefGoogle Scholar
  32. 32.
    Cressoni M, Cadringher P, Chiurazzi C, et al (2014) Lung inhomogeneity in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 189:149–58PubMedGoogle Scholar
  33. 33.
    Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28:596–608PubMedGoogle Scholar
  34. 34.
    Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323PubMedGoogle Scholar
  35. 35.
    Briel M, Meade M, Mercat A, et al (2010) Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and metaanalysis. JAMA 303:865–73PubMedCrossRefGoogle Scholar
  36. 36.
    Protti A, Andreis DT, Monti M, et al (2013) Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit Care Med 41:1046–55PubMedCrossRefGoogle Scholar
  37. 37.
    Protti A, Votta E, Gattinoni L (2014) Which is the most important strain in the pathogenesis of ventilator-induced lung injury: dynamic or static? Curr Opin Crit Care 20:33–8PubMedCrossRefGoogle Scholar

Copyright information

© Société de réanimation de langue française (SRLF) and Springer-Verlag France 2014

Authors and Affiliations

  1. 1.Service de médecine intensive adulte et centre des brûlésCentre hospitalier universitaire vaudois (CHUV)LausanneSuisse
  2. 2.Département de réanimation médicale et médecine hyperbareCHU d’AngersAngersFrance

Personalised recommendations