Réanimation

, Volume 22, Supplement 3, pp 577–583 | Cite as

Assistance par circulation extracorporelle veinoveineuse dans le traitement du syndrome de détresse respiratoire aiguë : rationnel et objectifs cliniques

Référentiel / Guidelines
  • 183 Downloads

Résumé

Les techniques de circulation extracorporelle (CEC) peuvent être utilisées dans les défaillances respiratoires graves des syndromes de détresse respiratoire aiguë (SDRA) avec trois objectifs : 1) assurer une oxygénation satisfaisante en court-circuitant le poumon malade grâce à une circulation veinoveineuse à haut débit ; cette technique assure sans difficulté l’épuration de CO2 ; 2) assurer avant tout une élimination partielle de CO2 dans le but de protéger le poumon d’une ventilation mécanique dangereuse. Des débits sanguins quatre à cinq fois plus faibles sont suffisants avec une circulation veinoveineuse ou artérioveineuse sans pompe ; 3) exceptionnellement, la prise en charge d’une défaillance cardiaque associée peut nécessiter une circulation veinoartérielle à haut débit. Des études physiologiques détaillées et des essais cliniques sont indispensables pour mieux connaître les indications de ces techniques.

Mots clés

Syndrome de détresse respiratoire aiguë Lésions liées à la ventilation Échange gazeux 

Veno-venous extracorporeal support to treat acute respiratory distress syndrome: Rationale and clinical objectives

Abstract

Extracorporeal circulation techniques can be used for the management of severe respiratory failure complicating the acute respiratory distress syndrome with three objectives: 1) to ensure satisfying oxygenation by bypassing the sick lung using a veno-venous circulation with high blood flows; this technique easily extracorporeal permit CO2 elimination; 2) to ensure partial elimination of CO2 with the aim to protect the lungs from risky mechanical ventilation. Four to five times lower blood flows are sufficient with a veno-venous circulation or pumpless arterio-venous techniques; 3) associated cardiac failure may exceptionally require veno-arterial extracorporeal circulation. Physiological studies and clinical trials are absolutely needed to better delineate the indications of these techniques.

Keywords

Acute respiratory distress syndrome Ventilator-induced lung injury Gas exchange 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Brodie D, Bacchetta M (2011) Extracorporeal membrane oxygenation for ARDS in adults. N Engl J Med 365:1905–1914PubMedCrossRefGoogle Scholar
  2. 2.
    Brenner K, Abrams D, Agerstrand C, Brodie D (2014) Extracorporeal carbon dioxide removal for refractory status asthmaticus: experience in distinct exacerbation phenotypes. Perfusion 29:26–28PubMedCrossRefGoogle Scholar
  3. 3.
    Gattinoni L, Pesenti A, Rossi GP, et al (1980) Treatment of acute respiratory failure with low-frequency positive-pressure ventilation and extracorporeal removal of CO2. Lancet ii:292–295CrossRefGoogle Scholar
  4. 4.
    Terragni PP, Del Sorbo L, Mascia L, et al (2009) Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology 111:826–835PubMedCrossRefGoogle Scholar
  5. 5.
    Peek GJ, Mugford M, Tiruvoipati R, et al (2009) Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 374:1351–1363PubMedCrossRefGoogle Scholar
  6. 6.
    Noah MA, Peek GJ, Finney SJ, et al (2011) Referral to an extracorporeal membrane oxygenation center and mortality among patients with severe 2009 influenza A(H1N1). JAMA 306:1659–1668PubMedCrossRefGoogle Scholar
  7. 7.
    Hemmila MR, Rowe SA, Boules TN, et al (2004) Extra corporeal life support for severe acute respiratory distress syndrome in adults. Ann Surg 240:595–605; discussion 605–7PubMedCentralPubMedGoogle Scholar
  8. 8.
    Brogan TV, Thiagarajan RR, Rycus PT, et al (2009) Extracorporeal membrane oxygenation in adults with severe respiratory failure: a multi-center database. Intensive Care Med 35:2105–2114PubMedCrossRefGoogle Scholar
  9. 9.
    Hodgson CL, Hayes K, Everard T, et al (2012) Long-term quality of life in patients with acute respiratory distress syndrome requiring extracorporeal membrane oxygenation for refractory hypoxaemia. Crit Care 16:R202PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Luyt CE, Combes A, Becquemin MH, et al (2012) Long-term outcomes of pandemic 2009 influenza A(H1N1)-associated severe ARDS. Chest 142:583–592PubMedCrossRefGoogle Scholar
  11. 11.
    Grocott MP, Martin DS, Levett DZ (2009) Arterial blood gases and oxygen content in climbers on Mount Everest. N Engl J Med 360:140–149PubMedCrossRefGoogle Scholar
  12. 12.
    Davies A, Jones D, Bailey M, et al (2009) Extracorporeal membrane oxygenation for 2009 influenza A(H1N1) acute respiratory distress syndrome. JAMA 302:1888–1895PubMedCrossRefGoogle Scholar
  13. 13.
    Pham T, Combes A, Roze H, et al (2013) Extracorporeal membrane oxygenation for pandemic influenza A(H1N1)-induced acute respiratory distress syndrome: a cohort study and propensity-matched analysis. Am J Respir Crit Care Med 187:276–285PubMedCrossRefGoogle Scholar
  14. 14.
    Darmon M, Schortgen F, Leon R, et al (2009) Impact of mild hypoxemia on renal function and renal resistive index during mechanical ventilation. Intensive Care Med 35:1031–1038PubMedCrossRefGoogle Scholar
  15. 15.
    Mikkelsen ME, Christie JD, Lanken PN, et al (2012) The adult respiratory distress syndrome cognitive outcomes study: long-term neuropsychological function in survivors of acute lung injury. Am J Respir Crit Care Med 185:1307–1315PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Hubmayr RD, Farmer JC (2010) Should we “rescue” patients with 2009 influenza A(H1N1) and lung injury from conventional mechanical ventilation? Chest 137:745–747PubMedCrossRefGoogle Scholar
  17. 17.
    Miller RR 3rd, Markewitz BA, Rolfs RT, et al (2010) Clinical findings and demographic factors associated with ICU admission in Utah due to novel 2009 influenza A(H1N1) infection. Chest 137:752–758PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Dubar G, Azria E, Tesniere A, et al (2010) French experience of 2009 A/H1N1v influenza in pregnant women. PLoS One 5 pii:e13112CrossRefGoogle Scholar
  19. 19.
    Fuhrman C, Bonmarin I, Bitar D, et al (2011) Adult intensive-care patients with 2009 pandemic influenza A(H1N1) infection. Epidemiol Infect 139:1202–1209PubMedCrossRefGoogle Scholar
  20. 20.
    Richard JC, Pham T, Brun-Buisson C, et al (2012) Interest of a simple on-line screening registry for measuring ICU burden related to an influenza pandemic. Crit Care 16:R118PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Mekontso-Dessap A, Charron C, Devaquet J, et al (2009) Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intensive Care Med 35:1850–1858PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Hickling KG, Henderson SJ, Jackson R (1990) Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 16:372–377PubMedCrossRefGoogle Scholar
  23. 23.
    Hickling KG, Walsh J, Henderson SJ, Jackson R (1994) Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med 22:1568–1578PubMedCrossRefGoogle Scholar
  24. 24.
    Curley G, Laffey JG, Kavanagh BP (2010) Bench-to-bedside review: carbon dioxide. Crit Care 14:220PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Kavanagh BP (2005) Therapeutic hypercapnia: careful science, better trials. Am J Respir Crit Care Med 171:96–97PubMedCrossRefGoogle Scholar
  26. 26.
    Laffey JG, O’Croinin D, McLoughlin P, Kavanagh BP (2004) Permissive hypercapnia: role in protective lung ventilatory strategies. Intensive Care Med 30:347–356PubMedCrossRefGoogle Scholar
  27. 27.
    Otulakowski G, Kavanagh BP (2011) Hypercapnia in acute illness: sometimes good, sometimes not. Crit Care Med 39:1581–1582PubMedCrossRefGoogle Scholar
  28. 28.
    Gates KL, Howell HA, Nair A, et al (2013) Hypercapnia impairs lung neutrophil function and increases mortality in murine pseudomonas pneumonia. Am J Respir Cell Mol Biol 49:821–838PubMedCrossRefGoogle Scholar
  29. 29.
    Helenius IT, Krupinski T, Turnbull DW, et al (2009) Elevated CO2 suppresses specific Drosophila innate immune responses and resistance to bacterial infection. Proc Natl Acad Sci USA 106:18710–18715PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Terragni PP, Rosboch G, Tealdi A, et al (2007) Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 175:160–166PubMedCrossRefGoogle Scholar
  31. 31.
    Rouby JJ, Brochard L (2007) Tidal recruitment and overinflation in acute respiratory distress syndrome: yin and yang. Am J Respir Crit Care Med 175:104–106PubMedCrossRefGoogle Scholar
  32. 32.
    Bein T, Weber-Carstens S, Goldmann A, et al (2013) Lower tidal volume strategy ( approximately 3 ml/kg) combined with extracorporeal CO2 removal versus “conventional” protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study. Intensive Care Med 39:847–856PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Grasso S, Terragni P, Birocco A, et al (2012) ECMO criteria for influenza A(H1N1)-associated ARDS: role of transpulmonary pressure. Intensive Care Med 38:395–403PubMedCrossRefGoogle Scholar
  34. 34.
    Talmor D, Sarge T, Malhotra A, et al (2008) Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 359:2095–2104PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Guerin C, Reignier J, Richard JC, et al (2013) Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 368:2159–3168PubMedCrossRefGoogle Scholar
  36. 36.
    Mauri T, Bellani G, Grasselli G, et al (2013) Patient-ventilator interaction in ARDS patients with extremely low compliance undergoing ECMO: a novel approach based on diaphragm electrical activity. Intensive Care Med 39:282–291PubMedCrossRefGoogle Scholar
  37. 37.
    Combes A, Leprince P, Luyt CE, et al (2009) Assistance cardiorespiratoire par extracorporeal membrane oxygenation (ECMO). Réanimation 18:420–427CrossRefGoogle Scholar

Copyright information

© Société de réanimation de langue française (SRLF) and Springer-Verlag France 2013

Authors and Affiliations

  1. 1.Hôpital Tenon, service de réanimation médicochirurgicaleAPHPParisFrance
  2. 2.Service des soins intensifshôpitaux universitaires de GenèveGenève 14Suisse
  3. 3.St Michael’s Hospital, Toronto Interdepartmental Division of Critical CareUniversity of TorontoTorontoCanada

Personalised recommendations