Réanimation

, Volume 23, Issue 2, pp 195–201

Dysfonction myocardique post-arrêt cardiaque

Mise au Point / Update

Résumé

La dysfonction myocardique post-arrêt cardiaque est une complication fréquemment observée, qui aggrave la situation hémodynamique et est grevée d’une morbimortalité propre. Son identification précoce, associée à un traitement approprié, constitue un élément important de la prise en charge en réanimation des survivants d’arrêt cardiaque. Cette dysfonction myocardique, dont le diagnostic repose essentiellement sur l’échocardiographie, survient généralement précocement après le retour à une activité circulatoire spontanée, et est complètement réversible en 48 à 72 heures. Elle se manifeste par une dysfonction systolique et diastolique. Elle peut être observée même en l’absence de cause coronaire à l’arrêt cardiaque. Une éventuelle cause ischémique doit toutefois systématiquement être recherchée, et le cas échéant traitée, car elle constitue un facteur aggravant cette dysfonction myocardique. À ce jour, le traitement inotrope de référence dans cette situation demeure la dobutamine, aucun autre outil pharmacologique n’ayant démontré un bénéfice plus important. Dans les situations les plus sévères, il est parfois nécessaire de mettre en place une assistance mécanique circulatoire si le pronostic neurologique est considéré favorable.

Mots clés

Arrêt cardiaque choc cardiogénique échocardiographie assistance mécanique circulatoire 

Postcardiac arrest myocardial dysfonction

Abstract

Post-resuscitation myocardial dysfunction (PRMD) is a frequent complication, which worsens hemodynamic status and may be lethal by itself. Early identification and treatment of this cardiac complication is one of the key-targets of support during hospitalization of these patients. Easy to identify using echocardiography, PRMD usually begins early after the resuscitation, and is completely reversible within 48 to 72 hours. Its presentation associates myocardial systolic and diastolic dysfunctions, even in the absence of coronary cause. However, detection and treatment of myocardial ischemia should be systematically performed when a coronary cause of cardiac arrest is suspected. To date, the most recommended treatment for systolic dysfunction remains dobutamine since no other pharmacological agents demonstrated its superiority in this setting. In the most severe cases, a mechanical circulatory assistance should be considered providing that neurological prognosis is not compromised.

Keywords

Cardiac arrest Cardiogenic shock Echocardiography Mechanical circulatory assistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Sasson C, Rogers MA, Dahl J, Kellermann AL (2010) Predictors of survival from out-of-hospital cardiac arrest: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes 3:63–81PubMedCrossRefGoogle Scholar
  2. 2.
    Lemiale V, Dumas F, Mongardon N, et al (2013) Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med 39:1972–1980PubMedCrossRefGoogle Scholar
  3. 3.
    Grace PA (1994) Ischaemia-reperfusion injury. Br J Surg 81: 637–647PubMedCrossRefGoogle Scholar
  4. 4.
    Negovsky VA (1972) The second step in resuscitation—the treatment of the “post-resuscitation disease”. Resuscitation 1:1–7PubMedCrossRefGoogle Scholar
  5. 5.
    Gazmuri RJ, Weil MH, Bisera J, et al (1996) Myocardial dysfunction after successful resuscitation from cardiac arrest. Crit Care Med 24:992–1000PubMedCrossRefGoogle Scholar
  6. 6.
    Kern KB, Hilwig RW, Rhee KH, et al (1996) Myocardial dysfunction after resuscitation from cardiac arrest: an example of global myocardial stunning. J Am Coll Cardiol 28:232–240PubMedCrossRefGoogle Scholar
  7. 7.
    Cerchiari EL, Safar P, Klein E, et al (1993) Cardiovascular function and neurologic outcome after cardiac arrest in dogs. The cardiovascular post-resuscitation syndrome. Resuscitation 25:9–33PubMedCrossRefGoogle Scholar
  8. 8.
    Xu T, Tang W, Ristagno G, et al (2008) Postresuscitation myocardial diastolic dysfunction following prolonged ventricular fibrillation and cardiopulmonary resuscitation. Crit Care Med 36:188–192PubMedCrossRefGoogle Scholar
  9. 9.
    Deantonio HJ, Kaul S, Lerman BB (1990) Reversible myocardial depression in survivors of cardiac arrest. Pacing Clin Electrophysiol PACE 13:982–985CrossRefGoogle Scholar
  10. 10.
    Ruiz-Bailén M, Aguayo de Hoyos E, Ruiz-Navarro S, et al (2005) Reversible myocardial dysfunction after cardiopulmonary resuscitation. Resuscitation 66:175–181PubMedCrossRefGoogle Scholar
  11. 11.
    Chang WT, Ma MH, Chien KL, et al (2006) Postresuscitation myocardial dysfunction: correlated factors and prognostic implications. Intensive Care Med 33:88–95PubMedCrossRefGoogle Scholar
  12. 12.
    Laurent I, Monchi M, Chiche JD, et al (2002) Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol 40:2110–2116PubMedCrossRefGoogle Scholar
  13. 13.
    Adrie C, Adib-Conquy M, Laurent I, et al (2002) Successful cardiopulmonary resuscitation after cardiac arrest as a “sepsis-like” syndrome. Circulation 106:562–568PubMedCrossRefGoogle Scholar
  14. 14.
    Chalkias A, Xanthos T (2011) Pathophysiology and pathogenesis of post-resuscitation myocardial stunning. Heart Fail Rev 17:117–128CrossRefGoogle Scholar
  15. 15.
    Fries M, Weil MH, Chang YT, et al (2006) Microcirculation during cardiac arrest and resuscitation. Crit Care Med 34:S454–S457PubMedCrossRefGoogle Scholar
  16. 16.
    Kamohara T, Weil MH, Tang W, et al (2001) A comparison of myocardial function after primary cardiac and primary asphyxial cardiac arrest. Am J Respir Crit Care Med 164:1221–1224PubMedCrossRefGoogle Scholar
  17. 17.
    Gazmuri RJ (2000) Effects of repetitive electrical shocks on postresuscitation myocardial function. Crit Care Med 28:N228–N232PubMedCrossRefGoogle Scholar
  18. 18.
    Tang W, Weil MH, Sun S, et al (2001) A comparison of biphasic and monophasic waveform defibrillation after prolonged ventricular fibrillation. Chest 120:948–954PubMedCrossRefGoogle Scholar
  19. 19.
    Tang W, Weil MH, Sun S, et al (1999) The effects of biphasic and conventional monophasic defibrillation on postresuscitation myocardial function. J Am Coll Cardiol 34:815–822PubMedCrossRefGoogle Scholar
  20. 20.
    Ristagno G, Wang T, Tang W, et al (2008) High-energy defibrillation impairs myocyte contractility and intracellular calcium dynamics. Crit Care Med 36:S422–S427PubMedCrossRefGoogle Scholar
  21. 21.
    Xie J, Weil MH, Sun S, et al (1997) High-energy defibrillation increases the severity of postresuscitation myocardial dysfunction. Circulation 96:683–688PubMedCrossRefGoogle Scholar
  22. 22.
    Tang W, Weil MH, Sun S, et al (1995) Epinephrine increases the severity of postresuscitation myocardial dysfunction. Circulation 92:3089–3093PubMedCrossRefGoogle Scholar
  23. 23.
    Rivers E, Nguyen B, Havstad S, et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377PubMedCrossRefGoogle Scholar
  24. 24.
    Gaieski DF, Band RA, Abella BS, et al (2009) Early goaldirected hemodynamic optimization combined with therapeutic hypothermia in comatose survivors of out-of-hospital cardiac arrest. Resuscitation 80:418–424PubMedCrossRefGoogle Scholar
  25. 25.
    Kern KB, Hilwig RW, Berg RA, et al (1997) Postresuscitation left ventricular systolic and diastolic dysfunction. Treatment with dobutamine. Circulation 95:2610–2613Google Scholar
  26. 26.
    Vasquez A, Kern KB, Hilwig RW, et al (2004) Optimal dosing of dobutamine for treating post-resuscitation left ventricular dysfunction. Resuscitation 61:199–207PubMedCrossRefGoogle Scholar
  27. 27.
    Huang L, Weil MH, Tang W, et al (2005) Comparison between dobutamine and levosimendan for management of postresuscitation myocardial dysfunction. Crit Care Med 33:487–491PubMedCrossRefGoogle Scholar
  28. 28.
    Kakavas S, Chalkias A, Xanthos T (2011) Vasoactive support in the optimization of post-cardiac arrest hemodynamic status: from pharmacology to clinical practice. Eur J Pharmacol 667:32–40PubMedCrossRefGoogle Scholar
  29. 29.
    Morrison LJ, Deakin CD, Morley PT, et al (2010) Part 8: Advanced Life Support 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 122:S345–S421PubMedCrossRefGoogle Scholar
  30. 30.
    Deo R, Albert CM (2012) Epidemiology and genetics of sudden cardiac death. Circulation 125:620–637PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Spaulding CM, Joly LM, Rosenberg A, et al (1997) Immediate coronary angiography in survivors of out-of-hospital cardiac arrest. N Engl J Med 336:1629–1633PubMedCrossRefGoogle Scholar
  32. 32.
    Dumas F, Cariou A, Manzo-Silberman S, et al (2010) Immediate Percutaneous Coronary Intervention Is Associated With Better Survival After Out-of-Hospital Cardiac ArrestClinical Perspective Insights From the PROCAT (Parisian Region Out of Hospital Cardiac Arrest) Registry. Circ Cardiovasc Interv 3:200–207PubMedCrossRefGoogle Scholar
  33. 33.
    Gräsner JT, Meybohm P, Caliebe A, et al (2011) Postresuscitation care with mild therapeutic hypothermia and coronary intervention after out-of-hospital cardiopulmonary resuscitation: a prospective registry analysis. Crit Care Lond Engl 15:R61CrossRefGoogle Scholar
  34. 34.
    Cronier P, Vignon P, Bouferrache K, et al (2011) Impact of routine percutaneous coronary intervention after out-of-hospital cardiac arrest due to ventricular fibrillation. Crit Care Lond Engl 15: R122CrossRefGoogle Scholar
  35. 35.
    Sideris G, Voicu S, Dillinger JG, et al (2011) Value of postresuscitation electrocardiogram in the diagnosis of acute myocardial infarction in out-of-hospital cardiac arrest patients. Resuscitation 82:1148–1153PubMedCrossRefGoogle Scholar
  36. 36.
    Chelly J, Mongardon N, Dumas F, et al (2012) Benefit of an early and systematic imaging procedure after cardiac arrest: insights from the PROCAT (Parisian Region Out of Hospital Cardiac Arrest) registry. Resuscitation 83:1444–1450PubMedCrossRefGoogle Scholar
  37. 37.
    Anyfantakis ZA, Baron G, Aubry P, et al (2009) Acute coronary angiographic findings in survivors of out-of-hospital cardiac arrest. Am Heart J 157:312–318PubMedCrossRefGoogle Scholar
  38. 38.
    Voicu S, Sideris G, Deye N, et al (2012) Role of cardiac troponin in the diagnosis of acute myocardial infarction in comatose patients resuscitated from out-of-hospital cardiac arrest. Resuscitation 83:452–458PubMedCrossRefGoogle Scholar
  39. 39.
    Dumas F, Manzo-Silberman S, Fichet J, et al (2012) Can early cardiac troponin I measurement help to predict recent coronary occlusion in out-of-hospital cardiac arrest survivors? Crit Care Med 40:1777–1784PubMedCrossRefGoogle Scholar
  40. 40.
    Wijns W, Kolh P, Danchin N, et al (2010) Guidelines on myocardial revascularization. Eur Heart J 31:2501–2555PubMedCrossRefGoogle Scholar
  41. 41.
    Wald DS, Morris JK, Wald NJ, et al (2013) Randomized trial of preventive angioplasty in myocardial infarction. N Engl J Med 369:1115–1123PubMedCrossRefGoogle Scholar
  42. 42.
    Bernard SA, Gray TW, Buist MD, et al (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346:557–563PubMedCrossRefGoogle Scholar
  43. 43.
    Hypothermia after Cardiac Arrest Study Group (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346:549–556CrossRefGoogle Scholar
  44. 44.
    Delhaye C, Mahmoudi M, Waksman R (2012) Hypothermia therapy: neurological and cardiac benefits. J Am Coll Cardiol 59: 197–210PubMedCrossRefGoogle Scholar
  45. 45.
    Chenoune M, Lidouren F, Adam C, et al (2011) Ultrafast and whole-body cooling with total liquid ventilation induces favorable neurological and cardiac outcomes after cardiac arrest in rabbits. Circulation 124:901–911PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Ye S, Weng Y, Sun S, et al (2012) Comparison of the durations of mild therapeutic hypothermia on outcome after cardiopulmonary resuscitation in the rat. Circulation 125:123–129PubMedCrossRefGoogle Scholar
  47. 47.
    Hsu CY, Huang CH, Chang WT, et al (2009) Cardioprotective effect of therapeutic hypothermia for postresuscitation myocardial dysfunction. Shock Augusta Ga 32:210–216CrossRefGoogle Scholar
  48. 48.
    Zobel C, Adler C, Kranz A, et al (2012) Mild therapeutic hypothermia in cardiogenic shock syndrome. Crit Care Med 40: 1715–1723PubMedCrossRefGoogle Scholar
  49. 49.
    Thiele H, Zeymer U, Neumann FJ, et al (2012) Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med 367:1287–1296PubMedCrossRefGoogle Scholar
  50. 50.
    Tennyson H, Kern KB, Hilwig RW, et al (2002) Treatment of post resuscitation myocardial dysfunction: aortic counterpulsation versus dobutamine. Resuscitation 54:69–75PubMedCrossRefGoogle Scholar
  51. 51.
    Manzo-Silberman S, Fichet J, Mathonnet A, et al (2013) Percutaneous left ventricular assistance in post cardiac arrest shock: Comparison of intra aortic blood pump and IMPELLA Recover LP2.5. Resuscitation 84:609–615PubMedCrossRefGoogle Scholar
  52. 52.
    Combes A, Leprince P, Luyt CE, et al (2008) Outcomes and long-term quality-of-life of patients supported by extracorporeal membrane oxygenation for refractory cardiogenic shock. Crit Care Med 36:1404–1411PubMedCrossRefGoogle Scholar
  53. 53.
    Wu MY, Lee MY, Lin CC, et al (2012) Resuscitation of nonpostcardiotomy cardiogenic shock or cardiac arrest with extracorporeal life support: the role of bridging to intervention. Resuscitation 83:976–981PubMedCrossRefGoogle Scholar
  54. 54.
    Sakamoto S, Taniguchi N, Nakajima S, et al (2012) Extracorporeal life support for cardiogenic shock or cardiac arrest due to acute coronary syndrome. Ann Thorac Surg 94:1–7PubMedCrossRefGoogle Scholar
  55. 55.
    Cour M, Loufouat J, Paillard M, et al (2011) Inhibition of mitochondrial permeability transition to prevent the post-cardiac arrest syndrome: a pre-clinical study. Eur Heart J 32:226–235PubMedCrossRefGoogle Scholar
  56. 56.
    Niemann JT, Youngquist S, Rosborough JP, et al (2010) Infliximab attenuates early myocardial dysfunction after resuscitation in a swine cardiac arrest model. Crit Care Med 38:1162–1167PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Fang X, Tang W, Sun S, et al (2006) delta-Opioid-induced pharmacologic myocardial hibernation during cardiopulmonary resuscitation. Crit Care Med 34:S486–S489PubMedCrossRefGoogle Scholar
  58. 58.
    Sun S, Weil MH, Tang W, et al (2004) Delta-opioid receptor agonist reduces severity of postresuscitation myocardial dysfunction. Am J Physiol Heart Circ Physiol 287:H969–H974PubMedCrossRefGoogle Scholar
  59. 59.
    Cammarata G, Weil MH, Sun S, et al (2004) Beta1-adrenergic blockade during cardiopulmonary resuscitation improves survival. Crit Care Med 32:S440–S443PubMedCrossRefGoogle Scholar
  60. 60.
    Huang CH, Hsu CY, Tsai MS, et al (2008) Cardioprotective effects of erythropoietin on postresuscitation myocardial dysfunction in appropriate therapeutic windows. Crit Care Med 36:S467–S473PubMedCrossRefGoogle Scholar
  61. 61.
    Niemann JT, Garner D, Khaleeli E, et al (2003) Milrinone facilitates resuscitation from cardiac arrest and attenuates postresuscitation myocardial dysfunction. Circulation 108:3031–3035PubMedCrossRefGoogle Scholar

Copyright information

© Société de réanimation de langue française (SRLF) and Springer-Verlag France 2014

Authors and Affiliations

  1. 1.Réanimation médicale, AP-HPhôpital CochinParis cedex 14France
  2. 2.Université Paris DescartesParis cedex 06France
  3. 3.INSERM U970, Paris Cardiovascular Research Centerhôpital européen Georges PompidouParisFrance

Personalised recommendations