Réanimation

, Volume 21, Issue 4, pp 511–519 | Cite as

La stimulation électrique neuromusculaire au cœur des soins intensifs

Revue / Review
  • 115 Downloads

Résumé

En raison des progrès techniques et d’une amélioration continue de la qualité des soins, de plus en plus de patients survivent à leur maladie grave. Toutefois, lors des séjours en unité de soins intensifs (USI), des altérations de la structure et de la fonction musculaire sont systématiquement observées et à l’origine de multiples conséquences fonctionnelles. Afin de réduire ces complications, des stratégies alternatives comme la stimulation électrique neuromusculaire (SENM) peuvent être envisagées. En effet, il est clairement établi qu’en initiant le plus précocement possible un réentraînement à l’effort, les patients évoluent mieux. Dans cette revue, les effets, les mécanismes d’action potentiels ainsi que les aspects méthodologiques de la SENM sont discutés. Les premières études sur la SENM en USI rapportent des résultats encourageants. Toutefois, des études complémentaires doivent encore être proposées pour mieux en comprendre les mécanismes. De plus, cette technique ne doit pas se substituer aux techniques de prise en charge classiquement proposées en USI.

Mots clés

Unité de soin intensif Dysfonction musculaire Stimulation électrique neuromusculaire 

Neuromuscular electrical stimulation in the intensive care unit

Abstract

In relation to the ongoing progress in patient management in the intensive care unit (ICU), the survival rate of many chronic illnesses has significantly increased in the recent years. However, during ICU stay, structural and functional muscle deteriorations systematically occur and result in various functional consequences. In order to counteract and reduce these complications, alternative strategies such as neuromuscular electrical stimulation (NMES) may be considered. Initiating exercise training as soon as possible improves patient’s prognosis in the ICU. The aim of the present review is to discuss the potential effects, mechanisms, and technical aspects of NMES. Preliminary results regarding the use of this training program in the ICU are encouraging. However, further research should be performed to better understand the mechanisms involved in this therapy.

Keywords

Intensive care Muscle dysfunction Neuromuscular electrical stimulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Adhikari NK, Rubenfeld CD (2011) Worldwide demand for critical care. Curr Opin Crit Care 17:620–625PubMedCrossRefGoogle Scholar
  2. 2.
    Spragg RG, Bernard GR, Checkley W, et al (2010) Beyond mortality: future clinical research in acute lung injury. Am J Respir Crit Care Med 181:1121–1127PubMedCrossRefGoogle Scholar
  3. 3.
    Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546–1554PubMedCrossRefGoogle Scholar
  4. 4.
    Eddleston JM, White P, Guthrie E (2000) Survival, morbidity, and quality of life after discharge from intensive care. Crit Care Med 28:2293–2299PubMedCrossRefGoogle Scholar
  5. 5.
    Granja C, Teixeira-Pinto A, Costa-Pereira A (2002) Quality of life after intensive care-evaluation with EQ-5D questionnaire. Intensive Care Med 28:898–907PubMedCrossRefGoogle Scholar
  6. 6.
    Herridge MS, Cheung AM, Tansey CM, et al (2003) One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med 348:683–693PubMedCrossRefGoogle Scholar
  7. 7.
    Herridge MS, Tansey CM, Matté A, et al (2011) Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med 364:1293–1304PubMedCrossRefGoogle Scholar
  8. 8.
    Stevens RD, Marshall SA, Cornblath DR, et al (2009) A framework for diagnosing and classifying intensive care unit-acquired weakness. Crit Care Med 37:S299–S308PubMedCrossRefGoogle Scholar
  9. 9.
    Ali NA, O’Brien JM Jr, Hoffmann SP, et al (2008) Acquired weakness, handgrip strength, and mortality in critically ill patients. Am J Respir Crit Care Med 178:261–268PubMedCrossRefGoogle Scholar
  10. 10.
    De Jonghe B, Bastuji-Garin S, Durand MC, et al (2007) Respiratory weakness is associated with limb weakness and delayed weaning in critical illness. Crit Care Med 35:2007–2015PubMedCrossRefGoogle Scholar
  11. 11.
    De Jonghe B, Bastuji-Garin S, Sharshar T, et al (2004) Does ICU-acquired paresis lengthen weaning from mechanical ventilation? Intensive Care Med 30:1117–1121PubMedCrossRefGoogle Scholar
  12. 12.
    Garnacho-Montero J, Amaya-Villar R, García-Garmendía JL, et al (2005) Effect of critical illness polyneuropathy on the withdrawal from mechanical ventilation and the length of stay in septic patients. Crit Care Med 33:349–354PubMedCrossRefGoogle Scholar
  13. 13.
    Sharshar T, Bastuji-Garin S, Stevens RD, et al (2009) Presence and severity of intensive care unit-acquired paresis at time of awakening are associated with increased intensive care unit and hospital mortality. Crit Care Med 37:3047–3053PubMedCrossRefGoogle Scholar
  14. 14.
    Bogdanski R, Blobner M, Werner C (2003) Critical illness polyneuropathy and myopathy: do they persist for lifetime? Crit Care Med 31:1279–1280PubMedCrossRefGoogle Scholar
  15. 15.
    Chambers MA, Moylan JS, Reid MB (2009) Physical inactivity and muscle weakness in the critically ill. Crit Care Med 37:S337–S346PubMedCrossRefGoogle Scholar
  16. 16.
    Ginz HF, Iaizzo PA, Girard T, et al (2005) Decreased isometric skeletal muscle force in critically ill patients. Swiss Med Wkly 135:555–561PubMedGoogle Scholar
  17. 17.
    Paddon-Jones D, Sheffield-Moore M, Cree MG, et al (2006) Atrophy and impaired muscle protein synthesis during prolonged inactivity and stress. J Clin Endocrinol Metab 91:4836–4841PubMedCrossRefGoogle Scholar
  18. 18.
    Witt NJ, Zochodne DW, Bolton CF, et al (1991) Peripheral nerve function in sepsis and multiple organ failure. Chest 99:176–184PubMedCrossRefGoogle Scholar
  19. 19.
    Leijten FS, De Weerd AW, Poortvliet DC, et al (1996) Critical illness polyneuropathy in multiple organ dysfunction syndrome and weaning from the ventilator. Intensive Care Med 22:856–861PubMedCrossRefGoogle Scholar
  20. 20.
    Bednarik J, Lukas Z, Vondracek P (2003) Critical illness polyneuromyopathy: the electrophysiological components of a complex entity. Intensive Care Med 29:1505–1514PubMedCrossRefGoogle Scholar
  21. 21.
    Griffiths RD, Palmer TE, Helliwell T, et al (1995) Effect of passive stretching on the wasting of muscle in the critically ill. Nutrition 11:428–432PubMedGoogle Scholar
  22. 22.
    Spruit MA, Gosselink R, Troosters T, et al (2003) Muscle force during an acute exacerbation in hospitalised patients with COPD and its relationship with CXCL8 and IGF-I. Thorax 58:752–756PubMedCrossRefGoogle Scholar
  23. 23.
    Truong AD, Fan E, Brower RG, Needham DM (2009) Bench-to-bedside review: mobilizing patients in the intensive care unit: from pathophysiology to clinical trials. Crit Care 13:216PubMedCrossRefGoogle Scholar
  24. 24.
    Man WD, Polkey MI, Donaldson N, et al (2004) Community pulmonary rehabilitation after hospitalisation for acute exacerbations of chronic obstructive pulmonary disease: randomised controlled study. BMJ 329:1209PubMedCrossRefGoogle Scholar
  25. 25.
    Clini E, Roversi P, Crisafulli E (2010) Early rehabilitation: much better than nothing. Am J Respir Crit Care Med 181:1016–1017PubMedCrossRefGoogle Scholar
  26. 26.
    Clini EM, Crisafulli E, Costi S, et al (2009) Effects of early inpatient rehabilitation after acute exacerbation of COPD. Respir Med 103:1526–1531PubMedCrossRefGoogle Scholar
  27. 27.
    Burtin C, Clerckx B, Robbeets C, et al (2009) Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med 37:2499–2505PubMedCrossRefGoogle Scholar
  28. 28.
    Schweickert WD, Pohlman MC, Pohlman AS, et al (2009) Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 373:1874–1882PubMedCrossRefGoogle Scholar
  29. 29.
    Kress JP (2009) Clinical trials of early mobilization of critically ill patients. Crit Care Med 37:S442–S447PubMedCrossRefGoogle Scholar
  30. 30.
    Hultman E, Sjöholm H, Jäderholm-Ek I, Krynicki J (1983) Evaluation of methods for electrical stimulation of human skeletal muscle in situ. Pflugers Arch 398:139–141PubMedCrossRefGoogle Scholar
  31. 31.
    Maffiuletti NA (2006) The use of electrostimulation exercise in competitive sport. Int J Sports Physiol Perform 1:406–407PubMedGoogle Scholar
  32. 32.
    Maffiuletti NA (2010) Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol 110:223–234PubMedCrossRefGoogle Scholar
  33. 33.
    Amiridis I, Arabatzi F, Violaris P, et al (2005) Static balance improvement in elderly after dorsiflexors electrostimulation training. Eur J Appl Physiol 94:424–433PubMedCrossRefGoogle Scholar
  34. 34.
    Petterson S, Snyder-Mackler L (2006) The use of neuromuscular electrical stimulation to improve activation deficits in a patient with chronic quadriceps strength impairments following total knee arthroplasty. J Orthop Sports Phys Ther 36:678–685PubMedGoogle Scholar
  35. 35.
    Glinsky J, Harvey L, Van Es P (2007) Efficacy of electrical stimulation to increase muscle strength in people with neurological conditions: a systematic review. Physiother Res Int 12:175–194PubMedCrossRefGoogle Scholar
  36. 36.
    Nuhr MJ, Pette D, Berger R, et al (2004) Beneficial effects of chronic low-frequency stimulation of thigh muscles in patients with advanced chronic heart failure. Eur Heart J 25:136–143PubMedCrossRefGoogle Scholar
  37. 37.
    Sillen MJ, Speksnijder CM, Eterman RM, et al (2009) Effects of neuromuscular electrical stimulation of muscles of ambulation in patients with chronic heart failure or COPD: a systematic review of the English-language literature. Chest 136:44–61PubMedCrossRefGoogle Scholar
  38. 38.
    Vivodtzev I, Lacasse Y, Maltais F (2008) Neuromuscular electrical stimulation of the lower limbs in patients with chronic obstructive pulmonary disease. J Cardiopulm Rehabil Prev 28:79–91PubMedGoogle Scholar
  39. 39.
    Couillard A, Prefaut C (2010) Electrostimulation in the rehabilitation of patients with severe COPD: pertinent or not. Rev Mal Respir 27:113–124PubMedCrossRefGoogle Scholar
  40. 40.
    Vivodtzev I, Debigaré R, Gagnon P, et al (2011) Functional and muscular effects of neuromuscular electrical stimulation in patients with severe COPD: a randomized clinical trial. Chest 141:716–725PubMedCrossRefGoogle Scholar
  41. 41.
    Zanotti E, Felicetti G, Maini M, Fracchia C (2003) Peripheral muscle strength training in bed-bound patients with COPD receiving mechanical ventilation: effect of electrical stimulation. Chest 124:292–296PubMedCrossRefGoogle Scholar
  42. 42.
    Gerovasili V, Stefanidis K, Vitzilaios K, et al (2009) Electrical muscle stimulation preserves the muscle mass of critically ill patients: a randomized study. Crit Care 13:R161PubMedCrossRefGoogle Scholar
  43. 43.
    Gerovasili V, Tripodaki E, Karatzanos E, et al (2009) Short-term systemic effect of electrical muscle stimulation in critically ill patients. Chest 136:1249–1256PubMedCrossRefGoogle Scholar
  44. 44.
    Routsi C, Gerovasili V, Vasileiadis I, et al (2010) Electrical muscle stimulation prevents critical illness polyneuromyopathy: a randomized parallel intervention trial. Crit Care 14:R74PubMedCrossRefGoogle Scholar
  45. 45.
    Gruther W, Kainberger F, Fialka-Moser V, et al (2010) Effects of neuromuscular electrical stimulation on muscle layer thickness of knee extensor muscles in intensive care unit patients: a pilot study. J Rehabil Med 42:593–597PubMedCrossRefGoogle Scholar
  46. 46.
    Meesen RL, Dendale P, Cuypers K, et al (2010) Neuromuscular electrical stimulation as a possible means to prevent muscle tissue wasting in artificially ventilated and sedated patients in the intensive care unit: a Pilot Study. Neuromodulation 13:315–321PubMedCrossRefGoogle Scholar
  47. 47.
    Poulsen JB, Moller K, Jensen CV, et al (2011) Effect of transcutaneous electrical muscle stimulation on muscle volume in patients with septic shock. Crit Care Med 39:456–61PubMedCrossRefGoogle Scholar
  48. 48.
    Rodriguez PO, Setten M, Maskin LP, et al (2011) Muscle weakness in septic patients requiring mechanical ventilation: Protective effect of transcutaneous neuromuscular electrical stimulation. J Crit Care [Epub ahead of print]Google Scholar
  49. 49.
    Abdellaoui A, Prefaut C, Gouzi F, et al (2011) Skeletal muscle effects of electrostimulation after COPD exacerbation: a pilot study. Eur Respir J 38:781–788PubMedCrossRefGoogle Scholar
  50. 50.
    Vanderthommen M, Crielaard JM (2001) Muscle electric stimulation in sports medicine. Rev Med Liege 56:391–395PubMedGoogle Scholar
  51. 51.
    Bowman BR, Baker LL (1985) Effects of waveform parameters on comfort during transcutaneous neuromuscular electrical stimulation. Ann Biomed Eng 13:59–74PubMedCrossRefGoogle Scholar
  52. 52.
    Packman-Braun R (1988) Relationship between functional electrical stimulation duty cycle and fatigue in wrist extensor muscles of patients with hemiparesis. Phys Ther 68:515–516Google Scholar

Copyright information

© Société de réanimation de langue française (SRLF) and Springer-Verlag France 2012

Authors and Affiliations

  1. 1.Clinique du Souffle « La Vallonie »groupe FontalvieLodèveFrance
  2. 2.Inserm U1046université Montpellier-I, CHUR de MontpellierMontpellierFrance

Personalised recommendations