Réanimation

, Volume 21, Issue 2, pp 165–170

Actualités sur le choc hémorragique

  • K. Asehnoune
  • A. Roquilly
  • A. Harrois
  • J. Duranteau
Mise au Point / Update
  • 290 Downloads

Résumé

Le choc hémorragique est caractérisé par une diminution du volume sanguin circulant avec une baisse du retour veineux. La réponse adaptative initiale consiste en une stimulation sympathique qui a pour but de redistribuer le volume sanguin résiduel vers les organes « protégés » (cerveau et cœur) aux dépens des circulations splanchniques, musculocutanées et rénales. Le remplissage vasculaire est la première thérapeutique à entreprendre avec un objectif de pression artérielle systolique (PAS) compris entre 80 et 100 mmHg et pression de perfusion cérébrale moyenne compris entre 65 et 70 mmHg en cas de lésion cérébrale. Le remplissage vasculaire peut être réalisé par des cristalloïdes ou par des colloïdes. Le remplissage vasculaire massif présente des effets délétères. Dans le cadre de la réanimation à « petit volume », l’emploi de sérum salé hypertonique peut être discuté. L’hypotension profonde impose un recours précoce aux catécholamines (noradrénaline). La transfusion de concentrés globulaires (CG) doit être instaurée dès que possible, l’apport d’érythrocytes est obligatoire quand l’hémoglobine est inférieure à 7 g/dl. Des plasmas frais congelés (PFC) sont perfusés afin de maintenir un taux de prothrombine supérieur à 40 %. Le ratio d’emploi des CG et des PFC doit être proche d’un CG pour un PFC. La transfusion de plaquettes est nécessaire en dessous de 50 G/l en cas de choc hémorragique et de 100 G/l en cas de lésions intracrâniennes associées. L’emploi de fibrinogène est envisagé quand sa concentration sanguine est inférieure à 1,5 g/l. Une insuffisance surrénalienne est régulièrement mise en évidence au cours du choc traumatique. L’hydrocortisone (à la dose de stress de 200 mg/j) semble diminuer la morbidité de cette insuffisance surrénalienne.

Mots clés

Choc hémorragique Remplissage vasculaire Noradrénaline Transfusion Concentré globulaire Concentré plaquettaire Plasma frais congelé 

Update on hemorrhagic shock

Abstract

Hemorrhagic shock is characterized by a decreased circulating blood volume that leads to an alteration of the venous return. The initial adaptative response relies on a central sympathetic activation in an attempt to distribute the residual blood volume to the protected organs (brain and heart). At the opposite, splanchnic as well as muscular and kidney vasculature beds are sacrificed during the ischemic period. Volume resuscitation is the first therapeutic measure to undertake, with a systolic arterial pressure target of 80–100 mmHg and a mean cerebral perfusion pressure of 65–70 mmHg in the case of an associated brain injury. Massive fluid resuscitation is associated with a significant morbidity. Some authors advocated the early use of vasopressors (norepinephrine) along with a controlled volume resuscitation. In the setting of moderate-volume resuscitation, the use of hypertonic saline solution is encouraged. Red blood cells should be transfused as soon as possible, especially when hemoglobinemia is < 7 g/dl. Fresh frozen plasma (FFP) should be used to maintain a prothrombin ratio > 40%. A transfusion strategy using FFP and red blood cells at a 1:1 ratio is recommended. Platelet concentrates are used to maintain a platelet count > 50 G/l and > 100 G/l when traumatic brain injuries are associated. Fibrinogen treatment should be considered and systematically administered when fibrinogen concentration is < 1.5 g/l. An adrenal insufficiency is frequent, and a stress dose of 200 mg/day of hydrocortisone decreases morbidity after a traumatic shock.

Keywords

Hemorrhagic shock Volume resuscitation Norepinephrine Transfusion Red blood cell pack Fresh frozen plasma Platelet concentrate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Schadt JC, Ludbrook J (1991) Hemodynamic and neurohumoral responses to acute hypovolemia in conscious mammals. Am J Physiol 260:H305–H318PubMedGoogle Scholar
  2. 2.
    Edouard AR, Degrémont AC, Duranteau J, et al (1994) Heterogeneous regional vascular responses to simulated transient hypovolemia in man. Intensive Care Med 20:414–420PubMedCrossRefGoogle Scholar
  3. 3.
    Jacobsohn E, Chorn R, O’Connor M (1997) The role of the vasculature in regulating venous return and cardiac output: historical and graphical approach. Can J Anaesth 44:849–867PubMedCrossRefGoogle Scholar
  4. 4.
    Rothe CF, Gaddis ML (1990) Autoregulation of cardiac output by passive elastic characteristics of the vascular capacitance system. Circulation 81:360–368PubMedCrossRefGoogle Scholar
  5. 5.
    Abboud FM (1989) Ventricular syncope: is the heart a sensory organ? N Engl J Med 320:390–392PubMedCrossRefGoogle Scholar
  6. 6.
    Rossaint R, Bouillon B, Cerny V, et al (2010) Management of bleeding following major trauma: an updated European guideline. Crit Care R52Google Scholar
  7. 7.
    Geeraerts T, Friggeri A, Mazoit JX, et al (2008) Posttraumatic brain vulnerability to hypoxia-hypotension: the importance of the delay between brain trauma and secondary insult. Intensive Care Med 34:551–560PubMedCrossRefGoogle Scholar
  8. 8.
    Mangiante EC, Hoots AV, Fabian TC (1988) The percutaneous common femoral vein catheter for volume replacement in critically injured patients. J Trauma 28:1644–1649PubMedCrossRefGoogle Scholar
  9. 9.
    SØreide E, Deakin CD (2005) Prehospital fluid therapy in the critically injured patient — a clinical update. Injury 36:1001–1010PubMedCrossRefGoogle Scholar
  10. 10.
    Choi PT, Yip G, Quinonez LG, Cook DJ (1999) Crystalloids vs. colloids in fluid resuscitation: a systematic review. Crit Care Med 27:200–210PubMedCrossRefGoogle Scholar
  11. 11.
    Marshall HP, Capone A, Courcoulas AP, et al (1997) Effects of hemodilution on long-term survival in an uncontrolled hemorrhagic shock model in rats. J Trauma 43:673–679PubMedCrossRefGoogle Scholar
  12. 12.
    Burris D, Rhee P, Kaufmann C, et al (1999) Controlled resuscitation for uncontrolled hemorrhagic shock. J Trauma 46:216–223PubMedCrossRefGoogle Scholar
  13. 13.
    Bickell WH, Wall MJ, Pepe PE, et al (1994) Immediate vs. delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med 331:1105–1109PubMedCrossRefGoogle Scholar
  14. 14.
    Kaweski SM, Sise MJ, Virgilio RW (1990) The effect of prehospital fluids on survival in trauma patients. J Trauma 30:1215–1218PubMedCrossRefGoogle Scholar
  15. 15.
    Hébert PC, Wells G, Blajchman MA, et al (1999) A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med 340:409–417PubMedCrossRefGoogle Scholar
  16. 16.
    Borgman MA, Spinella PC, Perkins JG, et al (2007) The ratio of blood products transfused affects mortality in patients receiving massive transfusions at a combat support hospital. J Trauma 63:805–813PubMedCrossRefGoogle Scholar
  17. 17.
    Spinella PC, Holcomb JB (2009) Resuscitation and transfusion principles for traumatic hemorrhagic shock. Blood Rev 23:231–240PubMedCrossRefGoogle Scholar
  18. 18.
    Nienaber U, Innerhofer P, Westermann I, et al (2011) The impact of fresh frozen plasma vs. coagulation factor concentrates on morbidity and mortality in trauma-associated haemorrhage and massive transfusion. Injury 42:697–701PubMedCrossRefGoogle Scholar
  19. 19.
    Kozek-Langenecker S, SØrensen B, Hess JR, Spahn DR (2011) Clinical effectiveness of fresh frozen plasma compared with fibrinogen concentrate: a systematic review. Crit Care 15:R239PubMedCrossRefGoogle Scholar
  20. 20.
    Ferrara A, MacArthur JD, Wright HK, et al (1990) Hypothermia and acidosis worsen coagulopathy in the patient requiring massive transfusion. Am J Surg 160:515–518PubMedCrossRefGoogle Scholar
  21. 21.
    Vivien BT, Langeron O, Morell E, et al (2005) Early hypocalcemia in severe trauma. Crit Care Med 33:1946–1952PubMedCrossRefGoogle Scholar
  22. 22.
    CRASH-2 trial collaborators (2010) Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet 376:23–32CrossRefGoogle Scholar
  23. 23.
    The CRASH-2 collaborators (2011) The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomized controlled trial. Lancet 377:1096.e2–1101.e2Google Scholar
  24. 24.
    Adib-Conquy M, Moine P, Asehnoune K, et al (2003) Toll-like receptor-mediated tumor necrosis factor and interleukin-10 production differ during systemic inflammation. Am J Respir Crit Care Med 168:158–164PubMedCrossRefGoogle Scholar
  25. 25.
    Adib-Conquy M, Adrie C, Moine P, et al (2000) NF-kappaB expression in mononuclear cells of patients with sepsis resembles that observed in lipopolysaccharide tolerance. Am J Respir Crit Care Med 162:1877–1883PubMedGoogle Scholar
  26. 26.
    Adib-Conquy M, Asehnoune K, Moine P, Cavaillon JM (2011) Long-term-impaired expression of nuclear factor-κB and IκBα in peripheral blood mononuclear cells of trauma patients. J Leukoc Biol 70:30–38Google Scholar
  27. 27.
    Rady MY, Kirkman E, Cranley J, Little RA (1993) A comparison of the effects of skeletal muscle injury and somatic afferent nerve stimulation on the response to hemorrhage in anesthetized pigs. J Trauma 35:756–761PubMedCrossRefGoogle Scholar
  28. 28.
    Smail N, Descorps-Declère A, Duranteau J, et al (1996) Left ventricular function after severe trauma. Intensive Care Med 22:439–442PubMedCrossRefGoogle Scholar
  29. 29.
    Smail N, Messiah A, Edouard A, et al (1995) Role of systemic inflammatory response syndrome and infection in the occurrence of early multiple organ dysfunction syndrome following severe trauma. Intensive Care Med 21:813–816PubMedCrossRefGoogle Scholar
  30. 30.
    Meier J, Pape A, Loniewska D, et al (2007) Norepinephrine increases tolerance to acute anemia. Crit Care Med 35:1484–1492PubMedCrossRefGoogle Scholar
  31. 31.
    Pojouladof MP, Borron SW, Amathieu R, et al (2007) Improved survival after resuscitation with norepinephrine in a murine model of uncontrolled hemorrhagic shock. Anesthesiology 107:591–596CrossRefGoogle Scholar
  32. 32.
    Cohan P, Wang C, McArthur DL, et al (2005) Acute secondary adrenal insufficiency after traumatic brain injury: a prospective study. Crit Care Med 33:2358–2366PubMedCrossRefGoogle Scholar
  33. 33.
    Hoen S, Mazoit J-X, Asehnoune K, et al (2005) Hydrocortisone increases the sensitivity to alpha-1-adrenoceptor stimulation in humans following hemorrhagic shock. Crit Care Med 33:2737–2743PubMedCrossRefGoogle Scholar
  34. 34.
    Hoen S, Asehnoune K, Brailly-Tabard S, et al (2002) Cortisol response to corticotropin stimulation in trauma patients. Influence of hemorrhagic shock. Anesthesiology 97:807–813PubMedCrossRefGoogle Scholar
  35. 35.
    Roquilly A, Mahe PJ, Seguin P, et al (2011) Hydrocortisone therapy for patients with multiple trauma. The randomized controlled HYPOLYTE study. JAMA 305:1201–1209PubMedCrossRefGoogle Scholar
  36. 36.
    Mazzoni MC, Borgström P, Arfors KE, Intaglietta M (1988) Dynamic fluid redistribution in hyperosmotic resuscitation of hypovolemic hemorrhage. Am J Physiol 255:H629–H637PubMedGoogle Scholar
  37. 37.
    Walsh JC, Kramer GC (1991) Resuscitation of hypovolemic sheep with hypertonic saline/dextran: the role of dextran. Circ Shock 34:336–343PubMedGoogle Scholar
  38. 38.
    Solomonov E, Hirsh M, Yahiya A, Krausz MM (2000) The effect of vigorous fluid resuscitation in uncontrolled hemorrhagic shock after massive splenic injury. Crit Care Med 28:749–754PubMedCrossRefGoogle Scholar
  39. 39.
    Kreimeier U, Messmer K (2002) Small-volume resuscitation: from experimental evidence to clinical routine. Advantages and disadvantages of hypertonic solutions. Acta Anaesthesiol Scand 46:625–638PubMedCrossRefGoogle Scholar

Copyright information

© Société de réanimation de langue française (SRLF) and Springer-Verlag France 2012

Authors and Affiliations

  • K. Asehnoune
    • 1
  • A. Roquilly
    • 1
  • A. Harrois
    • 2
  • J. Duranteau
    • 2
  1. 1.Service d’anesthésie-réanimationCHU de NantesNantes cedex 01France
  2. 2.Service d’anesthésie-réanimation chirurgicalecentre hospitalier de BicêtreLe-Kremlin-Bicêtre cedexFrance

Personalised recommendations