Advertisement

Réanimation

, Volume 21, Issue 2, pp 221–230 | Cite as

PCO2 transcutanée: pourquoi, comment et pour qui ?

  • P. -E. Gancel
  • R. Masson
  • D. Du Cheyron
  • E. Roupie
  • F. Lofaso
  • N. TerziEmail author
Note Technique / Technical Note

Résumé

La mesure de la pression transcutanée en dioxyde de carbone (PtcCO2) n’est pas une technologie récente, les premiers essais remontant au début des années 1960. L’amélioration des moniteurs, la miniaturisation et le développement des électrodes utilisées permettent aujourd’hui de proposer en routine une surveillance de la PtcCO2 continue, fiable, non invasive, simple et rapide. Cet accès indirect et simple à la pression artérielle en CO2 (PaCO2) est pour le clinicien une aide précieuse dans nombre de situations cliniques. Les moniteurs actuels permettent de mesurer aussi de façon rapide et non invasive bien d’autres paramètres (saturation transcutanée en oxygène, fréquences respiratoire et cardiaque, indice de perfusion tissulaire…), utiles pour apprécier la fonction respiratoire d’un patient et pour en suivre l’évolution dans le temps. La tendance actuelle en réanimation est de faire le monitorage le moins invasif possible, même s’il convient d’être prudent quant à l’utilisation abusive ou inadéquate des paramètres ainsi mesurés. Cette revue fait la synthèse du mode de fonctionnement, des avantages et limites, ainsi que des domaines d’application des outils de mesure de la PtcCO2.

Mots clés

PCO2 transcutanée Gazométrie artérielle Monitorage Non invasif Ventilation mécanique 

Transcutaneous PCO2: why, how and for whom?

Abstract

Measurement of the transcutaneous pressure of carbon dioxide (PtcCO2) is not a recent technology, as the first studies were conducted in the 1960s. Since then, improvements in the monitors and electrodes, together with greater miniaturization, have made continuous PtcCO2 a reliable, noninvasive, simple, and rapid measurement available for everyday clinical use. PtcCO2 monitoring is a simple mean for estimating the arterial CO2 partial pressure (PaCO2), which is invaluable in several clinical situations. Currently available PtcCO2 monitors are reliable and can be coupled with other parameters (SpO2, breathing rate, heart rate, tissue perfusion index…) to produce a rapid and noninvasive assessment of respiratory function and, more importantly, to monitor respiratory function over time. The current preference for noninvasive monitoring in the intensive care unit has driven the development of new technologies; however, caution is mandatory to avoid any abusive or inappropriate use. Given the fast-expanding array of available technologies and the abundant publications in this field, an overview of PtcCO2 monitoring appears useful. We describe here the available devices and discuss their advantages and limits, as well as the potential fields of their application.

Keywords

Transcutaneous CO2 Arterial blood gases Monitoring Noninvasive Mechanical ventilation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Gouget B, Sachs C (1982) Quality control of solutions for pH and blood gas analyzers. Bull Eur Physiopathol Respir 18:17P–23PPubMedGoogle Scholar
  2. 2.
    Severinghaus JW (1979) Pathophysiologic aspects of the regulation of respiration. Bull Mem Acad R Med Belg 134:261–271PubMedGoogle Scholar
  3. 3.
    Kampelmacher MJ, van Kesteren RG, Winckers EK (1997) Instrumental variability of respiratory blood gases among different blood gas analysers in different laboratories. Eur Respir J 10:1341–1344PubMedCrossRefGoogle Scholar
  4. 4.
    Fox MJ, Brody JS, Weintraub LR (1979) Leukocyte larceny: a cause of spurious hypoxemia. Am J Med 67:742–746PubMedCrossRefGoogle Scholar
  5. 5.
    Miller WW, Yafuso M, Yan CF, et al (1987) Performance of an in vivo, continuous blood-gas monitor with disposable probe. Clin Chem 33:1538–1542PubMedGoogle Scholar
  6. 6.
    Mahutte CK (1994) Continuous intra-arterial blood gas monitoring. Intensive Care Med 20:85–86PubMedCrossRefGoogle Scholar
  7. 7.
    Phan CQ, Tremper KK, Lee SE, Barker SJ (1987) Noninvasive monitoring of carbon dioxide: a comparison of the partial pressure of transcutaneous and end-tidal carbon dioxide with the partial pressure of arterial carbon dioxide. J Clin Monit 3:149–154PubMedCrossRefGoogle Scholar
  8. 8.
    Reid CW, Martineau RJ, Miller DR, et al (1992) A comparison of transcutaneous end-tidal and arterial measurements of carbon dioxide during general anaesthesia. Can J Anesth 39:31–36PubMedCrossRefGoogle Scholar
  9. 9.
    Laptook A, Oh W (1981) Transcutaneous carbon dioxide monitoring in the newborn period. Crit Care Med 9:759–760PubMedCrossRefGoogle Scholar
  10. 10.
    Monaco F, McQuitty JC (1981) Transcutaneous measurements of carbon dioxide partial pressure in sick neonates. Crit Care Med 9:756–758PubMedCrossRefGoogle Scholar
  11. 11.
    Hoppenbrouwers T, Hodgman JE, Arakawa K, et al (1992) Transcutaneous oxygen and carbon dioxide during the first half year of life in premature and normal term infants. Pediatr Res 31:73–79PubMedCrossRefGoogle Scholar
  12. 12.
    Eberhard P (2007) The design, use, and results of transcutaneous carbon dioxide analysis: current and future directions. Anesth Analg 105(6 Suppl):S48–S52PubMedCrossRefGoogle Scholar
  13. 13.
    Roupie EE (1997) Continuous assessment of arterial blood gases. Crit Care 1:11–14PubMedCrossRefGoogle Scholar
  14. 14.
    Sasse SA, Chen PA, Mahutte CK (1994) Variability of arterial blood gas values over time in stable medical ICU patients. Chest 106:187–193PubMedCrossRefGoogle Scholar
  15. 15.
    Severinghaus JW (1960) The CO2 electrode for monitoring satellite ambient CO2. WADC Tech Rep United States Air Force Wright Air Dev Cent Day Ohio 60–574:49–58PubMedGoogle Scholar
  16. 16.
    Wimberley PD, Frederiksen PS, Witt-Hansen J, et al (1985) Evaluation of a transcutaneous oxygen and carbon dioxide monitor in a neonatal intensive care department. Acta Pediatr Scand 74:352–359CrossRefGoogle Scholar
  17. 17.
    Broadhurst E, Helms P, Vyas H, Cheriyan G (1988) Arterialisation of transcutaneous oxygen and carbon dioxide. Arch Dis Child 63:1395–1396PubMedCrossRefGoogle Scholar
  18. 18.
    Monaco F, McQuitty JC, Nickerson BG (1983) Calibration of a heated transcutaneous carbon dioxide electrode to reflect arterial carbon dioxide. Am Rev Respir Dis 127:322–324PubMedGoogle Scholar
  19. 19.
    Bellone A, Barbieri A, Bursi F, Vettorello M (2006) Management of acute pulmonary edema in the emergency department. Curr Heart Fail Rep 3:129–135PubMedCrossRefGoogle Scholar
  20. 20.
    Mattu A, Martinez JP, Kelly BS (2005) Modern management of cardiogenic pulmonary edema. Emerg Med Clin North Am 23:1105–1125PubMedCrossRefGoogle Scholar
  21. 21.
    Yeow ME, Santanilla JI (2008) Noninvasive positive pressure ventilation in the emergency department. Emerg Med Clin North Am 26:835–847PubMedCrossRefGoogle Scholar
  22. 22.
    Varon J, Walsh GL, Fromm RE Jr (1998) Feasibility of noninvasive mechanical ventilation in the treatment of acute respiratory failure in postoperative cancer patients. J Crit Care 13:55–57PubMedCrossRefGoogle Scholar
  23. 23.
    Sottiaux TM (1999) Noninvasive positive pressure ventilation in the emergency department. Chest 115:301–303PubMedCrossRefGoogle Scholar
  24. 24.
    Brochard L, Mancebo J, Wysocki M, et al (1995) Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N Engl J Med 333:817–822PubMedCrossRefGoogle Scholar
  25. 25.
    Nishiyama T, Nakamura S, Yamashita K (2006) Comparison of the transcutaneous oxygen and carbon dioxide tension in different electrode locations during general anaesthesia. Eur J Anesthesiol 23:1049–1054CrossRefGoogle Scholar
  26. 26.
    Sivan Y, Eldadah MK, Cheah TE, Newth CJ (1992) Estimation of arterial carbon dioxide by end-tidal and transcutaneous PCO2 measurements in ventilated children. Pediatr Pulmonol 12:153–157PubMedCrossRefGoogle Scholar
  27. 27.
    Chopin C, Fesard P, Mangalaboyi J, et al (1990) Use of capnography in diagnosis of pulmonary embolism during acute respiratory failure of chronic obstructive pulmonary disease. Crit Care Med 18:353–357PubMedCrossRefGoogle Scholar
  28. 28.
    Glenski, JA, Cucchiara RF (1986) Transcutaneous O2 and CO2 monitoring of neurosurgical patients: detection of air embolism. Anesthesiology 64:546–550PubMedCrossRefGoogle Scholar
  29. 29.
    Gudipati CV, Weil MH, Bisera J, et al (1988) Expired carbon dioxide: a noninvasive monitor of cardiopulmonary resuscitation. Circulation 77:234–239PubMedCrossRefGoogle Scholar
  30. 30.
    Ambrosino N. Vagheggini G (2008) Noninvasive positive pressure ventilation in the acute care setting: where are we? Eur Respir J 31:874–886PubMedCrossRefGoogle Scholar
  31. 31.
    Demoule A, Girou E, Richard JC, et al (2006) Increased use of noninvasive ventilation in French intensive care units. Intensive Care Med 32:1747–1755PubMedCrossRefGoogle Scholar
  32. 32.
    Fanconi S, Tschupp A, Molinari L (1996) Long-term transcutaneous monitoring of oxygen tension and carbon dioxide at 42 degrees C in critically ill neonates: improved performance of the TcPO2 monitor with topical metabolic inhibition. Eur J Pediatr 155:1043–1046PubMedCrossRefGoogle Scholar
  33. 33.
    Kirk VG, Batuyong ED, Bohn SG (2006) Transcutaneous carbon dioxide monitoring and capnography during pediatric polysomnography. Sleep 29:1601–1608PubMedGoogle Scholar
  34. 34.
    Janssens JP, Borel JC, Pépin JL; SomnoNIV Group (2011) Nocturnal monitoring of home noninvasive ventilation: the contribution of simple tools such as pulse oximetry, capnography, built-in ventilator software and autonomic markers of sleep fragmentation. Thorax 66:438–445PubMedCrossRefGoogle Scholar
  35. 35.
    Paiva R, Krivec U, Aubertin G, et al (2009) Carbon dioxide monitoring during long-term noninvasive respiratory support in children. Intensive Care Med 35:1068–1074PubMedCrossRefGoogle Scholar
  36. 36.
    Nardi J, Prigent H, Adala A, et al (2012) Nocturnal oximetry and transcutaneous carbon dioxide in home-ventilated neuromuscular patients. Respir Care. Accepted for publicationGoogle Scholar
  37. 37.
    Gancel PE, Roupie E, Guittet L, et al (2011) Accuracy of a transcutaneous carbon dioxide pressure monitoring device in emergency room patients with acute respiratory failure. Intensive Care Med 37:348–351PubMedCrossRefGoogle Scholar
  38. 38.
    McVicar J, Eager R (2009) Validation study of a transcutaneous carbon dioxide monitor in patients in the emergency department. Emerg Med J 26:344–346PubMedCrossRefGoogle Scholar
  39. 39.
    Berlowitz DJ, Spong J, O’Donoghue FJ, et al (2011) Transcutaneous measurement of carbon dioxide tension during extended monitoring: evaluation of accuracy and stability, and an algorithm for correcting calibration drift. Respir Care 56:442–448PubMedCrossRefGoogle Scholar
  40. 40.
    Perrin K, Wijesinghe M, Weatherall M, Beasley R (2011) Assessing PaCO2 in acute respiratory disease: accuracy of a transcutaneous carbon dioxide device. Intern Med J 41:630–633PubMedCrossRefGoogle Scholar
  41. 41.
    Storre JH, Magnet FS, Dreher M, Windisch W (2011) Transcutaneous monitoring as a replacement for arterial PCO(2) monitoring during nocturnal noninvasive ventilation. Respir Med 105:143–150PubMedCrossRefGoogle Scholar
  42. 42.
    Roediger R, Beck-Schimmer B, Theusinger OM, et al (2011) The revised digital transcutaneous PCO2/SpO2 ear sensor is a reliable noninvasive monitoring tool in patients after cardiac surgery. J Cardiothorac Vasc Anesth 25:243–249PubMedCrossRefGoogle Scholar
  43. 43.
    Nicolini A, Ferrari MB (2011) Evaluation of a transcutaneous carbon dioxide monitor in patients with acute respiratory failure. Ann Thorac Med 6:217–220PubMedCrossRefGoogle Scholar
  44. 44.
    Kelly AM, Klim S (2011) Agreement between arterial and transcutaneous PCO2 in patients undergoing noninvasive ventilation. Respir Med 105:226–229PubMedCrossRefGoogle Scholar
  45. 45.
    Hazenberg A, Zijlstra JG, Kerstjens HA, Wijkstra PJ (2011) Validation of a transcutaneous CO2 monitor in adult patients with chronic respiratory failure. Respiration 81:242–246PubMedCrossRefGoogle Scholar
  46. 46.
    Xue Q, Wu X, Jin J, et al (2010) Transcutaneous carbon dioxide monitoring accurately predicts arterial carbon dioxide partial pressure in patients undergoing prolonged laparoscopic surgery. Anesth Analg 111:417–420PubMedCrossRefGoogle Scholar
  47. 47.
    De Oliveira GS Jr, Ahmad S, Fitzgerald PC, McCarthy RJ (2010) Detection of hypoventilation during deep sedation in patients undergoing ambulatory gynaecological hysteroscopy: a comparison between transcutaneous and nasal end-tidal carbon dioxide measurements. Br J Anesth 104:774–778CrossRefGoogle Scholar
  48. 48.
    Chakravarthy M, Narayan S, Govindarajan R, et al (2010) Weaning mechanical ventilation after off-pump coronary artery bypass graft procedures directed by noninvasive gas measurements. J Cardiothorac Vasc Anesth 24:451–455PubMedCrossRefGoogle Scholar
  49. 49.
    Johnson DC, Batool S, Dalbec R (2008) Transcutaneous carbon dioxide pressure monitoring in a specialized weaning unit. Respir Care 53:1042–1047PubMedGoogle Scholar
  50. 50.
    Rodriguez P, Lellouche F, Aboab J, et al (2006) Transcutaneous arterial carbon dioxide pressure monitoring in critically ill adult patients. Intensive Care Med 32:309–312PubMedCrossRefGoogle Scholar
  51. 51.
    Chiumello D, Conti G, Foti G, et al (2009) Noninvasive ventilation outside the intensive care unit for acute respiratory failure. Minerva Anesthesiol 75:459–466Google Scholar
  52. 52.
    Ambrosino N, Vagheggini G (2007) Noninvasive ventilation in exacerbations of COPD. Int J Chron Obstruct Pulmon Dis 2:471–476PubMedGoogle Scholar
  53. 53.
    Nava S, Carbone G, DiBattista N, et al (2003) Noninvasive ventilation in cardiogenic pulmonary edema: a multicenter randomized trial. Am J Respir Crit Care Med 168:1432–1437PubMedCrossRefGoogle Scholar
  54. 54.
    Nava S, Hill N (2009) Noninvasive ventilation in acute respiratory failure. Lancet 374:250–259PubMedCrossRefGoogle Scholar
  55. 55.
    Bolliger D, Steiner LA, Kasper J, et al (2007) The accuracy of noninvasive carbon dioxide monitoring: a clinical evaluation of two transcutaneous systems. Anesthesia 62:394–399CrossRefGoogle Scholar
  56. 56.
    Severinghaus JW (1981) A combined transcutaneous PO2-PCO2 electrode with electrochemical HCO3-stabilization. J Appl Physiol 51:1027–1032PubMedGoogle Scholar
  57. 57.
    Cuvelier A, Grigoriu B, Molano LC, Muir JF (2005) Limitations of transcutaneous carbon dioxide measurements for assessing long-term mechanical ventilation. Chest 127:1744–1748PubMedCrossRefGoogle Scholar
  58. 58.
    Okeson GC, Wulbrecht PH (1998) The safety of brachial artery puncture for arterial blood sampling. Chest 114:748–751PubMedCrossRefGoogle Scholar
  59. 59.
    Cox M, Kemp R, Anwar S, et al (2006) Noninvasive monitoring of CO2 levels in patients using NIV for AECOPD. Thorax 61:363–364PubMedCrossRefGoogle Scholar
  60. 60.
    Storre JH, Steurer B, Kabitz HJ, et al (2007) Transcutaneous PCO2 monitoring during initiation of noninvasive ventilation. Chest 132:1810–1816PubMedCrossRefGoogle Scholar
  61. 61.
    Senn O, Clarenbach CF, Kaplan V, et al (2005) Monitoring carbon dioxide tension and arterial oxygen saturation by a single earlobe sensor in patients with critical illness or sleep apnea. Chest 128:1291–1296PubMedCrossRefGoogle Scholar
  62. 62.
    Bendjelid K, Schütz N, Stotz M, et al (2005) Transcutaneous PCO2 monitoring in critically ill adults: clinical evaluation of a new sensor. Crit Care Med 33:2203–2206PubMedCrossRefGoogle Scholar
  63. 63.
    Abraham E, Smith M, Silver L (1984) Continuous monitoring of critically ill patients with transcutaneous oxygen and carbon dioxide and conjunctival oxygen sensors. Ann Emerg Med 13: 1021–1026PubMedCrossRefGoogle Scholar
  64. 64.
    Vallée F, Mateo J, Dubreuil G, et al (2010) Cutaneous ear lobe PCO at 37 degrees C to evaluate microperfusion in patients with septic shock. Chest 138:1062–1070PubMedCrossRefGoogle Scholar
  65. 65.
    Hinkelbein J, Floss F, Denz C, Krieter H (2008) Accuracy and precision of three different methods to determine PCO2 (paCO2 vs PetCO2 vs PtcCO2) during interhospital ground transport of critically ill and ventilated adults. J Trauma 65:10–18PubMedCrossRefGoogle Scholar
  66. 66.
    Griffin J, Terry BE, Burton RK, et al (2003) Comparison of endtidal and transcutaneous measures of carbon dioxide during general anaesthesia in severely obese adults. Br J Anesth 91:498–501CrossRefGoogle Scholar
  67. 67.
    Rafferty TD, Marrero O, Nardi D, et al (1981) Relationship between transcutaneous and arterial carbon dioxide tension in adult patients anesthetized with nitrous oxide-fentanyl and nitrous oxide-enflurane. Anesth Analg 60:504–507PubMedCrossRefGoogle Scholar
  68. 68.
    Tobias JD (2003) Noninvasive carbon dioxide monitoring during one-lung ventilation: end-tidal vs transcutaneous techniques. J Cardiothorac Vasc Anesth 17:306–308PubMedCrossRefGoogle Scholar
  69. 69.
    Fanelli G, Baciarello M, Squicciarini G, et al (2008) Transcutaneous carbon dioxide monitoring in spontaneously breathing, nonintubated patients in the early postoperative period. Minerva Anesthesiol 74:375–380Google Scholar
  70. 70.
    Casati A, Squicciarini G, Malagutti G, et al (2006) Transcutaneous monitoring of partial pressure of carbon dioxide in the elderly patient: a prospective, clinical comparison with end-tidal monitoring. J Clin Anesth 18:436–440PubMedCrossRefGoogle Scholar
  71. 71.
    Parker SM, Gibson GJ (2007) Evaluation of a transcutaneous carbon dioxide monitor (« Tosca ») in adult patients in routine respiratory practice. Respir Med 101:261–264PubMedCrossRefGoogle Scholar
  72. 72.
    Maniscalco M, Zedda A, Faraone S, et al (2008) Evaluation of a transcutaneous carbon dioxide monitor in severe obesity. Intensive Care MedGoogle Scholar
  73. 73.
    Evans EN, Ganeshalingam K, Ebden P (1998) Changes in oxygen saturation and transcutaneous carbon dioxide and oxygen levels in patients undergoing fibreoptic bronchoscopy. Respir Med 92:739–742PubMedCrossRefGoogle Scholar
  74. 74.
    Ries AL (1987) Oximetry: know thy limits. Chest 91:316PubMedCrossRefGoogle Scholar

Copyright information

© Société de réanimation de langue française (SRLF) and Springer-Verlag France 2012

Authors and Affiliations

  • P. -E. Gancel
    • 1
  • R. Masson
    • 2
  • D. Du Cheyron
    • 2
  • E. Roupie
    • 1
  • F. Lofaso
    • 3
    • 4
  • N. Terzi
    • 5
    Email author
  1. 1.Service d’accueil et de traitement des urgencesCHRU CaenCaenFrance
  2. 2.Service de réanimationmédicaleCHRU CaenCaenFrance
  3. 3.Services de physiologie, explorations fonctionnelles, hôpital Raymond-Poincaré, centre d’investigation clinique, innovations technologiques, AP-HP, EA 4497université de Versailles-Saint-Quentin-en-YvelinesGarchesFrance
  4. 4.Inserm U955CréteilFrance
  5. 5.Inserm, U1075, service de réanimation médicale, CHRU Caenuniversité de CaenCaenFrance

Personalised recommendations