Advertisement

Réanimation

, Volume 21, Supplement 2, pp 354–362 | Cite as

Intérêt clinique de la pharmacogénétique : anticiper les toxicités et mieux prédire l’efficacité des médicaments

  • C. Narjoz
  • C. Moreau
  • P. Beaune
  • M. -A. LoriotEmail author
Enseignement Supérieur en Réanimation Médecin
  • 175 Downloads

Résumé

La réponse aux médicaments est souvent variable d’un individu à l’autre, ce qui rend parfois leur maniement délicat. La prédiction de la réponse devient un problème crucial en cas de fenêtre thérapeutique étroite de ces médicaments ou de l’existence d’alternatives thérapeutiques. Des facteurs génétiques affectant le métabolisme et le transport des médicaments expliquent en partie la variabilité interindividuelle dans la réponse. La pharmacogénétique étudie les mécanismes d’origine génétique intervenant dans la réponse aux médicaments dans le but d’optimiser les traitements médicamenteux, tant en termes d’efficacité que de sécurité d’emploi. L’existence de polymorphismes génétiques affectant les gènes codant pour les enzymes du métabolisme des médicaments aboutit à distinguer, dans la population générale, différentes classes d’individus en fonction de leur capacité métabolique vis-à-vis d’une enzyme donnée, à savoir des métaboliseurs lents, rapides et même parfois ultrarapides. Des méthodes de phénotypage et de génotypage permettent de déterminer ou de prédire le statut métabolique d’un individu et de savoir ainsi s’il présente un risque particulier d’inefficacité ou de toxicité vis-à-vis de certains médicaments. Plusieurs exemples d’applications cliniques (thiopurines, antivitamine K, codéine et tramadol) permettent d’illustrer l’intérêt de la pharmacogénétique pour la prise en charge des malades. La validation clinique d’un grand nombre d’analyses pharmacogénétiques et la mise au point de nouvelles technologies très performantes et peu coûteuses de génotypage vont contribuer au développement rapide de cette discipline dans la pratique médicale courante, avec la perspective d’une individualisation des traitements médicamenteux associée à l’amélioration du taux de réponse et la diminution des accidents iatrogènes.

Mots clés

Médicament Variabilité interindividuelle Pharmacogénétique Prédiction de la réponse 

Clinical utility of pharmacogenetics for predicting drug efficacy and toxicity

Abstract

The narrow therapeutic index of most pharmaceutical agents and the severe consequences of undertreatment or overdosing have led to search for molecular predictive factors of toxicity and efficacy. Genetic factors involved in drug metabolism and transport partly explain inter-individual variability in drug response. Pharmacogenetics focuses on the molecular mechanisms involved in drug response. Its ultimate goal is to optimize the treatments, combining the better efficacy with the minimal risk of severe side-effects. Polymorphisms in genes encoding specific drugmetabolising enzymes may be encountered in some individuals and allow characterizing different groups in the general population as low, rapid and even ultra-rapid metabolisers. Phenotyping and genotyping tests are now available to determine or predict the metabolic status of an individual and, thus, enabling to evaluate the risk of drug failure or toxicity. Several clinical applications of pharmacogenetics (thiopurines, antivitamine K, codeine, and tramadol) have already been developed in the routine medical practice resulting in significant improvement in patient treatment. The clinical validation of an increasing number of pharmacogenetic tests as well as the development of new highly efficient technologies for genotyping should further promote pharmacogenetics in clinical practice and lead to the development of a patient-tailored drug therapy.

Keywords

Drug Interindividual variability Pharmacogenetics Prediction of drug response 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279:1200–1205PubMedCrossRefGoogle Scholar
  2. 2.
    Pirmohamed M, James S, Meakin S, et al (2004) Adverse drug reactions as cause of admission to hospital: prospective analysis of 18,820 patients. BMJ 329:15–19PubMedCrossRefGoogle Scholar
  3. 3.
    Pouyanne P, Haramburu F, Imbs JL, et al (2000) Admissions to hospital caused by adverse drug reactions: cross sectional incidence study. French Pharmacovigilance Centres. BMJ 320:1036PubMedCrossRefGoogle Scholar
  4. 4.
    Beaune PH, Loriot MA (2000) Molecular basis of individual susceptibility to xenobiotics: man and environment. MS. Médecine sciences 16:1051–1056CrossRefGoogle Scholar
  5. 5.
    Gardiner SJ, Begg EJ (2006) Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol Rev 58:521–590PubMedCrossRefGoogle Scholar
  6. 6.
    Xu C, Li CY, Kong AN (2005) Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res 28:249–268PubMedCrossRefGoogle Scholar
  7. 7.
    Renton KW (2000) Hepatic drug metabolism and immunostimulation. Toxicology 142:173–178PubMedCrossRefGoogle Scholar
  8. 8.
    Allorge D, Loriot MA (2004) Pharmacogenetics or the promise of a personalized medicine: variability in drug metabolism and transport. Ann Biol Clin (Paris) 62:499–511Google Scholar
  9. 9.
    Meyer UA (1991) Genotype or phenotype: the definition of a pharmacogenetic polymorphism. Pharmacogenetics 1:66–67PubMedCrossRefGoogle Scholar
  10. 10.
    Textoris J, Davidson J, Martin C, et al (2009) Role of genetics in anaesthesia-related variability. Ann Fr Anesth Reanim 28:564–574PubMedCrossRefGoogle Scholar
  11. 11.
    Miheller P, Lakatos PL (2010) Thiopurines in Crohn’s disease, is there something new? Expert Opin Drug Metab Toxicol 6:1505–1514PubMedCrossRefGoogle Scholar
  12. 12.
    Roblin X, Peyrin-Biroulet L, Phelip JM, et al (2008) A 6-thioguanine nucleotide threshold level of 400 pmol/8 × 10(8) erythrocytes predicts azathioprine refractoriness in patients with inflammatory bowel disease and normal TPMT activity. Am J Gastroenterol 1103:3115–3122PubMedCrossRefGoogle Scholar
  13. 13.
    Lowry PW, Franklin CL, Weaver AL, et al (2001) Measurement of thiopurine methyltransferase activity and azathioprine metabolites in patients with inflammatory bowel disease. Gut 49:665–670PubMedCrossRefGoogle Scholar
  14. 14.
    Gisbert JP, Nino P, Rodrigo L, et al (2006) Thiopurine methyltransferase (TPMT) activity and adverse effects of azathioprine in inflammatory bowel disease: long-term follow-up study of 394 patients. Am J Gastroenterol 101:2769–2776PubMedCrossRefGoogle Scholar
  15. 15.
    McLeod HL, Siva C (2002) The thiopurine S-methyltransferase gene locus-implications for clinical pharmacogenomics. Pharmacogenomics 3:89–98PubMedCrossRefGoogle Scholar
  16. 16.
    Evans WE, Hon YY, Bomgaars L, et al (2001) Preponderance of thiopurine S-methyltransferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine. J Clin Oncol 19:2293–2301PubMedGoogle Scholar
  17. 17.
    Thervet E, Anglicheau D, Toledano N, et al (2001) Long-term results of TPMT activity monitoring in azathioprine-treated renal allograft recipients. J Am Soc Nephrol 12:170–176PubMedGoogle Scholar
  18. 18.
    Dewit O, Starkel Problin X (2010) Thiopurine metabolism monitoring: implications in inflammatory bowel diseases. Eur J Clin Invest 40:1037–1047PubMedCrossRefGoogle Scholar
  19. 19.
    Oldenburg J, Watzka M, Rost S, et al (2007) VKORC1: molecular target of coumarins. J Thromb Haemost 5(Suppl 1):1–6PubMedCrossRefGoogle Scholar
  20. 20.
    Ansell J, Hirsh J, Hylek E, et al (2008) Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 133:160S–98SPubMedCrossRefGoogle Scholar
  21. 21.
    Rieder MJ, Reiner AP, Gage BF, et al (2005) Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 352:2285–2293PubMedCrossRefGoogle Scholar
  22. 22.
    Wadelius M, Chen LY, Downes K, et al (2005) Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J 5:262–270PubMedCrossRefGoogle Scholar
  23. 23.
    Veenstra DL, You JH, Rieder MJ, et al (2005) Association of vitamin K epoxide reductase complex 1 (VKORC1) variants with warfarin dose in a Hong Kong Chinese patient population. Pharmacogenet Genomics 15:687–691PubMedCrossRefGoogle Scholar
  24. 24.
    Sconce EA, Khan TI, Wynne HA, et al (2005) The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 106:2329–2333PubMedCrossRefGoogle Scholar
  25. 25.
    D’Andrea G, D’Ambrosio RL, Di PernA P, et al (2005) A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood 105:645–649PubMedCrossRefGoogle Scholar
  26. 26.
    Vecsler M, Loebstein R, Almog S, et al (2006) Combined genetic profiles of components and regulators of the vitamin Kdependent gamma-carboxylation system affect individual sensitivity to warfarin. Thromb Haemost 95:205–211PubMedGoogle Scholar
  27. 27.
    Carlquist JF, Horne BD, Muhlestein JB, et al (2006) Genotypes of the cytochrome P450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study. J Thromb Thrombolysis 22:191–197PubMedCrossRefGoogle Scholar
  28. 28.
    Caldwell MD, Awad T, Johnson JA, et al (2008) CYP4F2 genetic variant alters required warfarin dose. Blood 111:4106–4112PubMedCrossRefGoogle Scholar
  29. 29.
    Perez-Andreu V, Roldan V, Lopez-Fernandez MF, et al (2010) Pharmacogenetics of acenocoumarol in patients with extreme dose requirements. J Thromb Haemost 8:1012–1017PubMedGoogle Scholar
  30. 30.
    Takeuchi F, McGinnis R, Bourgeois S, et al (2009) A genomewide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet 5:e1000433PubMedCrossRefGoogle Scholar
  31. 31.
    Zambon CF, Pengo V, Padrini R, et al (2010) VKORC1, CYP2C9 and CYP4F2 genetic-based algorithm for warfarin dosing: an Italian retrospective study. Pharmacogenomics 12:15–25CrossRefGoogle Scholar
  32. 32.
    Yuan Hy, Chen JJ, Lee MT, et al (2005) A novel functional VKORC1 promoter polymorphism is associated with interindividual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet 14:1745–1751PubMedCrossRefGoogle Scholar
  33. 33.
    Aithal GP, Day CP, Kesteven PJ, et al (1999) Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 353:717–719PubMedCrossRefGoogle Scholar
  34. 34.
    Margaglione M, Colaizzo D, D’Andrea G, et al (2000) Genetic modulation of oral anticoagulation with warfarin. Thromb Haemost 84:775–778PubMedGoogle Scholar
  35. 35.
    Higashi MK, Veenstra DL, Kondo LM, et al (2002) Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 287:1690–1698PubMedCrossRefGoogle Scholar
  36. 36.
    Peyvandi F, Spreafico M, Siboni SM, et al (2004) CYP2C9 genotypes and dose requirements during the induction phase of oral anticoagulant therapy. Clin Pharmacol Ther 75:198–203PubMedCrossRefGoogle Scholar
  37. 37.
    Sanderson S, Emery Jhiggins J (2005) CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet systematic review and meta-analysis. Genet Med 7:97–104PubMedCrossRefGoogle Scholar
  38. 38.
    Schwarz UI, Ritchie MD, Bradford Y, et al (2008) Genetic determinants of response to warfarin during initial anticoagulation. N Engl J Med 358:999–1008PubMedCrossRefGoogle Scholar
  39. 39.
    Wadelius M, Chen LY, Lindh JD, et al (2009) The largest prospective warfarin-treated cohort supports genetic forecasting. Blood 113:784–792PubMedCrossRefGoogle Scholar
  40. 40.
    Schalekamp T, Brasse BP, Roijers JF, et al (2006) VKORC1 and CYP2C9 genotypes and acenocoumarol anticoagulation status: interaction between both genotypes affects overanticoagulation. Clin Pharmacol Ther 80:13–22PubMedCrossRefGoogle Scholar
  41. 41.
    Verstuyft C, Morin S, Robert A, et al (2001) Early acenocoumarol overanticoagulation among cytochrome P450 2C9 poor metabolizers. Pharmacogenetics 11:735–737PubMedCrossRefGoogle Scholar
  42. 42.
    Epstein RS, Moyer TP, Aubert RE, et al (2010) Warfarin genotyping reduces hospitalization rates results from the MM-WES (Medco-Mayo Warfarin Effectiveness study). J Am Coll Cardiol 55:2804–2812PubMedCrossRefGoogle Scholar
  43. 43.
    Vree Tb, Verwey-Van Wissen CP (1992) Pharmacokinetics and metabolism of codeine in humans. Biopharm Drug Dispos 13:445–460PubMedCrossRefGoogle Scholar
  44. 44.
    Mahgoub A, Idle JR, Dring LG, et al (1977) Polymorphic hydroxylation of debrisoquine in man. Lancet 2:584–586PubMedCrossRefGoogle Scholar
  45. 45.
    Wienkers LC, Heath TG (2005) Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov 4:825–833PubMedCrossRefGoogle Scholar
  46. 46.
    Dayer P, Desmeules J, Leemann T, et al (1988) Bioactivation of the narcotic drug codeine in human liver is mediated by the polymorphic monooxygenase catalyzing debrisoquine 4-hydroxylation (cytochrome P450 dbl/bufI). Biochem Biophys Res Commun 152:411–416PubMedCrossRefGoogle Scholar
  47. 47.
    Sindrup SH, Brosen K, Bjerring P, et al (1990) Codeine increases pain thresholds to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine. Clin Pharmacol Ther 48:686–693PubMedCrossRefGoogle Scholar
  48. 48.
    Bertilsson L (2007) Metabolism of antidepressant and neuroleptic drugs by cytochrome P450s: clinical and interethnic aspects. Clin Pharmacol Ther 82:606–609PubMedCrossRefGoogle Scholar
  49. 49.
    Poulsen L, Brosen K, Arendt-Nielsen L, et al (1996) Codeine and morphine in extensive and poor metabolizers of sparteine: pharmacokinetics, analgesic effect and side effects. Eur J Clin Pharmacol 51:289–295PubMedCrossRefGoogle Scholar
  50. 50.
    Eckhardt K, Li S, Ammon S, et al (1998) Same incidence of adverse drug events after codeine administration irrespective of the genetically determined differences in morphine formation. Pain 76:27–33PubMedCrossRefGoogle Scholar
  51. 51.
    Kirchheiner J, Schmidt H, Tzvetkov M, et al (2007) Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. Pharmacogenomics J 7:257–265PubMedCrossRefGoogle Scholar
  52. 52.
    Gasche Y, Daali Y, Fathi M, et al (2004) Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N Engl J Med 351:2827–2831PubMedCrossRefGoogle Scholar
  53. 53.
    Ciszkowski C, Madadi P, Phillips MS, et al (2009) Codeine, ultrarapid-metabolism genotype, and postoperative death. N Engl J Med 361:827–828PubMedCrossRefGoogle Scholar
  54. 54.
    Madadi P, Koren G, Cairns J, et al (2007) Safety of codeine during breastfeeding: fatal morphine poisoning in the breastfed neonate of a mother prescribed codeine. Can Fam Physician 53:33–35PubMedGoogle Scholar
  55. 55.
    Koren G, Cairns J, Chitayat D, et al (2006) Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeineprescribed mother. Lancet 368:704PubMedCrossRefGoogle Scholar
  56. 56.
    Paar WD, Frankus Pdengler HJ (1992) The metabolism of tramadol by human liver microsomes. Clin Investig 70:708–710PubMedCrossRefGoogle Scholar
  57. 57.
    Wu WN, Mckown Laliao S (2002) Metabolism of the analgesic drug ULTRAM (tramadol hydrochloride) in humans: API-MS and MS/MS characterization of metabolites. Xenobiotica 32:411–425PubMedCrossRefGoogle Scholar
  58. 58.
    Grond S, Sablotzki A (2004) Clinical pharmacology of tramadol. Clin Pharmacokinet 43:879–923PubMedCrossRefGoogle Scholar
  59. 59.
    Stamer UM, Stuber F, Muders T, et al (2008) Respiratory depression with tramadol in a patient with renal impairment and CYP2D6 gene duplication. Anesth Analg 107:926–929PubMedCrossRefGoogle Scholar
  60. 60.
    Ginsburg GS, Voora D (2010) The long and winding road to warfarin pharmacogenetic testing. J Am Coll Cardiol 55:2813–2815PubMedCrossRefGoogle Scholar
  61. 61.
    De Chaisemartin L, Loriot MA (2005) Pharmacogenetics of anticancer drugs. Pathol Biol (Paris) 53:116–124CrossRefGoogle Scholar
  62. 62.
    Wang L, McLeod HL, Weinshilboum RM (2011) Genomics and drug response. N Engl J Med 364:1144–1153PubMedCrossRefGoogle Scholar
  63. 63.
    Swen JJ, Nijenhuis M, DE Boer A, et al (2011) Pharmacogenetics: from bench to byte: an update of guidelines. Clin Pharmacol Ther 89:662–673PubMedCrossRefGoogle Scholar

Copyright information

© Société de réanimation de langue française (SRLF) and Springer-Verlag France 2011

Authors and Affiliations

  • C. Narjoz
    • 1
    • 2
  • C. Moreau
    • 1
    • 2
  • P. Beaune
    • 1
    • 2
  • M. -A. Loriot
    • 1
    • 2
    Email author
  1. 1.Inserm UMR-S 775université Paris-Descartes, centre universitaire des Saints-PèresParisFrance
  2. 2.UF pharmacogénétique et oncologie moléculaire, service de biochimie, pôle biologie et produits de la santéHôpital Européen Georges-PompidouParisFrance

Personalised recommendations