Réanimation

, Volume 20, Issue 6, pp 493–501 | Cite as

Intoxication au monoxyde de carbone et place de l’oxygénothérapie hyperbare

Mise Au Point / Update
  • 173 Downloads

Résumé

Le traitement par oxygénothérapie hyperbare (OHB) lors des intoxications au monoxyde de carbone est utilisé depuis plus de 50 ans. Néanmoins, le protocole à appliquer et le sous-groupe de patients pouvant bénéficier de l’OHB restent débattus. La physiopathologie de l’intoxication au monoxyde de carbone est complexe, expliquant la diversité des tableaux cliniques retrouvés neurologiques (troubles de la conscience et syndrome postintervallaire) mais aussi cardiaques (ischémie à coronaires saines notamment). La physiopathologie fait intervenir une hypoxie anémique par formation de carboxyhémoglobine mais aussi une hypoxie hypoxique par blocage de la chaîne respiratoire au niveau de la cytochrome oxydase, un stress oxydatif et des lésions d’ischémie-reperfusion. La carboxyhémoglobine (veineuse ou artérielle) n’est pas à prendre en compte pour le traitement; le dosage de la troponine Ic au moindre doute est souhaitable. Les bases de traitement par l’OHB reposent d’abord sur des arguments physiopathologiques: détoxification plus rapide des protéines héminiques, effet antioxydant et amélioration de la physiologie cérébrale (diminution de la pression intracrânienne, diminution de l’oedème et préservation de la zone de pénombre). Les autres arguments sont issus des essais thérapeutiques randomisés. Quatre des cinq études randomisées utilisant une OHB avec une pression supérieure à 2 ATA étaient positives. Deux études à 2 ATA étaient négatives. Ainsi, les recommandations européennes et américaines suggèrent l’utilisation d’OHB à 2,5 ATA au moins dans les situations à risque de séquelles neurologiques (tout signe neurologique objectif y compris perte de connaissance), en cas d’atteinte cardiaque ou de grossesse. Il faut insister sur un traitement par oxygénothérapie à fort débit pendant 8-12 heures en cas de non-indication de l’OHB.

Mots clés

Oxygénothérapie hyperbare Intoxication au monoxyde de carbone 

Carbon monoxide poisoning: what about hyperbaric oxygen?

Abstract

Hyperbaric oxygen (HBO) is used since more than 50 years for carbon monoxide poisoning. However, HBO protocols and indications are still debated. Neurological (coma and delayed neuropsychological sequelae) and cardiac (ischemic changes with normal coronary arteries) clinical scenarios are explained by complex mechanisms. Carboxyhemoglobin formation, cytochrome oxydase inhibition, oxidative stress, as well as ischemia-reperfusion phenomenon are among these mechanisms. Venous and arterial carboxyhemoglobin levels are not correlated with the patient’s final prognosis and thus not mandatory for indicating the treatment. Conversely, troponin IC measurement is strongly recommended if myocardial involvement is suspected. HBO treatment relies on mechanistic bases: earlier detoxification, anti-oxidant properties, and improvement in cerebral physiology (decrease in intracranial pressure and oedema, and ischemic penumbra preservation). Clinical basis is assessed by the results of the randomized clinical trials (RCTs). Four among the 5 RCTs using > 2 ATA OHB protocols were positive. Two RCTs at 2 ATA level were negative. Therefore, international guidelines recommend OHB with at least 2.5 ATA in patients at risk of delayed neuropsychological sequelae, whatever the objective neurological signs are, in pregnant women, and patients with myocardial involvement. If OHB is not required, normobaric oxygen with high flow rates during at least 8-12 hours is mandatory.

Keywords

Hyperbaric oxygen Carbon monoxide poisoning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Thom SR, Bhopale VM, Milovanova TM, et al (2010) Plasma biomarkers in carbon monoxide poisoning. Clin Toxicol (Phila) 48(1):47–56CrossRefGoogle Scholar
  2. 2.
    Weaver LK, Hopkins RO, Chan KJ, et al (2002) Hyperbaric oxygen for acute carbon monoxide poisoning. N Engl J Med 347(14):1057–1067PubMedCrossRefGoogle Scholar
  3. 3.
    Luomanmaki K, Coburn RF (1969) Effects of metabolism and distribution of carbon monoxide on blood and body stores. Am J Physiol 217(2):354–363PubMedGoogle Scholar
  4. 4.
    Miro O, Casademont J, Barrientos A, et al (1998) Mitochondrial cytochrome c oxidase inhibition during acute carbon monoxide poisoning. Pharmacol Toxicol 82(4):199–202PubMedCrossRefGoogle Scholar
  5. 5.
    Thom SR (1990) Carbon monoxide-mediated brain lipid peroxidation in the rat. J Appl Physiol 68(3):997–1003PubMedGoogle Scholar
  6. 6.
    Thom SR (1992) Dehydrogenase conversion to oxidase and lipid peroxidation in brain after carbon monoxide poisoning. J Appl Physiol 73(4):1584–1589PubMedGoogle Scholar
  7. 7.
    Brown SD, Piantadosi CA (1992) Recovery of energy metabolism in rat brain after carbon monoxide hypoxia. J Clin Invest 89(2):666–672PubMedCrossRefGoogle Scholar
  8. 8.
    Thom SR (1993) Leukocytes in carbon monoxide-mediated brain oxidative injury. Toxicol Appl Pharmacol 123(2):234–247PubMedCrossRefGoogle Scholar
  9. 9.
    Thom SR, Fisher D, Xu YA, et al (1999) Role of nitric oxide-derived oxidants in vascular injury from carbon monoxide in the rat. Am J Physiol 276(3 Pt 2):H984–H992PubMedGoogle Scholar
  10. 10.
    Thom SR (1993) Leukocytes in carbon monoxide-mediated brain oxidative injury. Toxicol Appl Pharmacol 123(2):234–247PubMedCrossRefGoogle Scholar
  11. 11.
    Thom SR, Ohnishi ST, Ischiropoulos H (1994) Nitric oxide released by platelets inhibits neutrophil B2 integrin function following acute carbon monoxide poisoning. Toxicol Appl Pharmacol 128(1):105–110PubMedCrossRefGoogle Scholar
  12. 12.
    Kavakli HS, Erel O, Delice O, et al (2011) Oxidative stress increases in carbon monoxide poisoning patients. Hum Exp Toxicol 30(2):160–164PubMedCrossRefGoogle Scholar
  13. 13.
    Garrabou G, Inoriza JM, Moren C, et al (2011) Mitochondrial injury in human acute carbon monoxide poisoning: the effect of oxygen treatment. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 29(1):32–51PubMedCrossRefGoogle Scholar
  14. 14.
    Cronje FJ, Carraway MS, Freiberger JJ, et al (2004) Carbon monoxide actuates O(2)-limited heme degradation in the rat brain. Free Radic Biol Med 37(11):1802–1812PubMedCrossRefGoogle Scholar
  15. 15.
    Favory R, Lancel S, Tissier S, et al (2006) Myocardial dysfunction and potential cardiac hypoxia in rats induced by carbon monoxide inhalation. Am J Respir Crit Care Med 174(3):320–325PubMedCrossRefGoogle Scholar
  16. 16.
    Iheagwara KN, Thom SR, Deutschman CS, Levy RJ (2007) Myocardial cytochrome oxidase activity is decreased following carbon monoxide exposure. Biochim Biophys Acta 1772(9):1112–1116PubMedGoogle Scholar
  17. 17.
    Fracasso T, Pfeiffer H, Michaud K, et al (2011) Immunohistochemical expression of fibronectin and C5b-9 in the myocardium in cases of carbon monoxide poisoning. Int J Legal Med 125(3):377–384PubMedCrossRefGoogle Scholar
  18. 18.
    Satran D, Henry CR, Adkinson C, et al (2005) Cardiovascular manifestations of moderate to severe carbon monoxide poisoning. J Am Coll Cardiol 45(9):1513–1516PubMedCrossRefGoogle Scholar
  19. 19.
    Henry CR, Satran D, Lindgren B, et al (2006) Myocardial injury and long-term mortality following moderate to severe carbon monoxide poisoning. JAMA 295(4):398–402PubMedCrossRefGoogle Scholar
  20. 20.
    Kalay N, Ozdogru I, Cetinkaya Y, et al (2007) Cardiovascular effects of carbon monoxide poisoning. Am J Cardiol 99(3):322–324PubMedCrossRefGoogle Scholar
  21. 21.
    Teksam O, Gumus P, Bayrakci B, et al (2010) Acute cardiac effects of carbon monoxide poisoning in children. Eur J Emerg Med 17(4):192–196PubMedCrossRefGoogle Scholar
  22. 22.
    Piantadosi CA, Zhang J, Levin ED, et al (1997) Apoptosis and delayed neuronal damage after carbon monoxide poisoning in the rat. Exp Neurol 147(1):103–114PubMedCrossRefGoogle Scholar
  23. 23.
    Thom SR, Bhopale VM, Fisher D, et al (2004) Delayed neuropathology after carbon monoxide poisoning is immune-mediated. Proc Natl Acad Sci USA 101(37):13660–13665PubMedCrossRefGoogle Scholar
  24. 24.
    Hampson NB, Hauff NM (2008) Carboxyhemoglobin levels in carbon monoxide poisoning: do they correlate with the clinical picture? Am J Emerg Med 26(6):665–669PubMedCrossRefGoogle Scholar
  25. 25.
    Weaver LK, Valentine KJ, Hopkins RO (2007) Carbon monoxide poisoning: risk factors for cognitive sequelae and the role of hyperbaric oxygen. Am J Respir Crit Care Med 176(5):491–497PubMedCrossRefGoogle Scholar
  26. 26.
    Brvar M, Finderle Z, Suput D, Bunc M (2006) S100B protein in conscious carbon monoxide-poisoned rats treated with normobaric or hyperbaric oxygen. Crit Care Med 34(8):2228–2230PubMedCrossRefGoogle Scholar
  27. 27.
    Rasmussen LS, Poulsen MG, Christiansen M, Jansen EC (2004) Biochemical markers for brain damage after carbon monoxide poisoning. Acta Anaesthesiol Scand 48(4):469–473PubMedCrossRefGoogle Scholar
  28. 28.
    Cakir Z, Aslan S, Umudum Z, et al (2010) S-100beta and neuron-specific enolase levels in carbon monoxide-related brain injury. Am J Emerg Med 28(1):61–67PubMedCrossRefGoogle Scholar
  29. 29.
    Yardan T, Cevik Y, Donderici O, et al (2009) Elevated serum S-100beta protein and neuron-specific enolase levels in carbon monoxide poisoning. Am J Emerg Med 27(7):838–842PubMedCrossRefGoogle Scholar
  30. 30.
    Ide T, Kamijo Y (2009) The early elevation of interleukin 6 concentration in cerebrospinal fluid and delayed encephalopathy of carbon monoxide poisoning. Am J Emerg Med 27(8):992–996PubMedCrossRefGoogle Scholar
  31. 31.
    Ide T, Kamijo Y (2008) Myelin basic protein in cerebrospinal fluid: a predictive marker of delayed encephalopathy from carbon monoxide poisoning. Am J Emerg Med 26(8):908–912PubMedCrossRefGoogle Scholar
  32. 32.
    Pace N, Strajman E, Walker EL (1950) Acceleration of carbon monoxide elimination in man by high pressure oxygen. Science 111(2894):652–654PubMedCrossRefGoogle Scholar
  33. 33.
    Rogatsky GG, Kamenir Y, Mayevsky A (2005) Effect of hyperbaric oxygenation on intracranial pressure elevation rate in rats during the early phase of severe traumatic brain injury. Brain Res 1047(2):131–136PubMedCrossRefGoogle Scholar
  34. 34.
    Rockswold GL, Ford SE, Anderson DC, et al (1992) Results of a prospective randomized trial for treatment of severely brain-injured patients with hyperbaric oxygen. J Neurosurg 76(6):929–934PubMedCrossRefGoogle Scholar
  35. 35.
    Thom SR, Fisher D, Zhang J, et al (2004) Neuronal nitric oxide synthase and N-methyl-D-aspartate neurons in experimental carbon monoxide poisoning. Toxicol Appl Pharmacol 194(3):280–295PubMedCrossRefGoogle Scholar
  36. 36.
    Wang P, Zeng T, Zhang CL, et al (2009) Lipid peroxidation was involved in the memory impairment of carbon monoxide-induced delayed neuron damage. Neurochem Res 34(7):1293–1298PubMedCrossRefGoogle Scholar
  37. 37.
    Thom SR, Bhopale VM, Fisher D (2006) Hyperbaric oxygen reduces delayed immune-mediated neuropathology in experimental carbon monoxide toxicity. Toxicol Appl Pharmacol 213(2):152–159PubMedCrossRefGoogle Scholar
  38. 38.
    Atochin DN, Fisher D, Demchenko IT, Thom SR (2000) Neutrophil sequestration and the effect of hyperbaric oxygen in a rat model of temporary middle cerebral artery occlusion. Undersea Hyperb Med 27(4):185–190PubMedGoogle Scholar
  39. 39.
    Yang ZJ, Camporesi C, Yang X, et al (2002) Hyperbaric oxygenation mitigates focal cerebral injury and reduces striatal dopamine release in a rat model of transient middle cerebral artery occlusion. Eur J Appl Physiol 87(2):101–107PubMedCrossRefGoogle Scholar
  40. 40.
    Mrsic-Pelcic J, Pelcic G, Vitezic D, et al (2004) Hyperbaric oxygen treatment: the influence on the hippocampal superoxide dismutase and Na+,K+-ATPase activities in global cerebral ischemiaexposed rats. Neurochem Int 44(8):585–594PubMedCrossRefGoogle Scholar
  41. 41.
    Raphael JC, Elkharrat D, Jars-Guincestre MC, et al (1989) Trial of normobaric and hyperbaric oxygen for acute carbon monoxide intoxication. Lancet 2(8660):414–419PubMedCrossRefGoogle Scholar
  42. 42.
    Brown SD, Piantadosi CA (1992) Recovery of energy metabolism in rat brain after carbon monoxide hypoxia. J Clin Invest 89(2):666–672PubMedCrossRefGoogle Scholar
  43. 43.
    Thom SR, Mendiguren I, Hardy K, et al (1997) Inhibition of human neutrophil beta2-integrin-dependent adherence by hyperbaric O2. Am J Physiol 272(3 Pt 1):C770–C777PubMedGoogle Scholar
  44. 44.
    Thom SR, Taber RL, Mendiguren II, et al (1995) Delayed neuropsychologic sequelae after carbon monoxide poisoning: prevention by treatment with hyperbaric oxygen. Ann Emerg Med 25(4):474–480PubMedCrossRefGoogle Scholar
  45. 45.
    Ducasse JL, Celsis P, Marc-Vergnes JP (1995) Non-comatose patients with acute carbon monoxide poisoning: hyperbaric or normobaric oxygenation? Undersea Hyperb Med 22(1):9–15PubMedGoogle Scholar
  46. 46.
    Scheinkestel CD, Bailey M, Myles PS, et al (1999) Hyperbaric or normobaric oxygen for acute carbon monoxide poisoning: a randomized controlled clinical trial. Med J Aust 170:203–210PubMedGoogle Scholar
  47. 47.
    Juurlink DN, Buckley NA, Stanbrook MB, et al (2005) Hyperbaric oxygen for carbon monoxide poisoning. Cochrane Database Syst Rev (1):CD002041Google Scholar
  48. 48.
    Buckley NA, Juurlink DN, Isbister G, et al (2011) Hyperbaric oxygen for carbon monoxide poisoning. Cochrane Database Syst Rev (4):CD002041Google Scholar
  49. 49.
    Hampson NB, Dunford RG, Ross DE, et al (2006) A prospective, randomized clinical trial comparing two hyperbaric treatment protocols for carbon monoxide poisoning. Undersea Hyperb Med 33(1):27–32PubMedGoogle Scholar
  50. 50.
    Hopkins RO, Weaver LK, Valentine KJ, et al (2007) Apolipoprotein E genotype and response of carbon monoxide poisoning to hyperbaric oxygen treatment. Am J Respir Crit Care Med 176(10):1001–1006PubMedCrossRefGoogle Scholar
  51. 51.
    Annane D, Chevret S, Raphael JC (2011) Hyperbaric oxygen therapy for acute domestic carbon monoxide poisoning: two randomized controlled trials: reply to comment by Birmingham and Hoffman. Intensive Care MedGoogle Scholar
  52. 52.
    Hawkins M, Harrison J, Charters P (2000) Severe carbon monoxide poisoning: outcome after hyperbaric oxygen therapy. Br J Anaesth 84(5):584–586PubMedGoogle Scholar
  53. 53.
    Ginsberg MD, Myers RE (1974) Fetal brain damage following maternal carbon monoxide intoxication: an experimental study. Acta Obstet Gynecol Scand 53(4):309–317PubMedCrossRefGoogle Scholar
  54. 54.
    Caravati EM, Adams CJ, Joyce SM, Schafer NC (1988) Fetal toxicity associated with maternal carbon monoxide poisoning. Ann Emerg Med 17(7):714–717PubMedCrossRefGoogle Scholar
  55. 55.
    Cramer CR (1982) Fetal death due to accidental maternal carbon monoxide poisoning. J Toxicol Clin Toxicol 19(3):297–301PubMedCrossRefGoogle Scholar
  56. 56.
    Longo LD (1977) The biological effects of carbon monoxide on the pregnant woman, fetus, and newborn infant. Am J Obstet Gynecol 129(1):69–103PubMedGoogle Scholar
  57. 57.
    Hu H, Pan X, Wan Y, et al (2011) Factors affecting the prognosis of patients with delayed encephalopathy after acute carbon monoxide poisoning. Am J Emerg Med 29(3):261–264PubMedCrossRefGoogle Scholar
  58. 58.
    Chang DC, Lee JT, Lo CP, et al (2010) Hyperbaric oxygen ameliorates delayed neuropsychiatric syndrome of carbon monoxide poisoning. Undersea Hyperb Med 37(1):23–33PubMedGoogle Scholar

Copyright information

© Société de réanimation de langue française (SRLF) and Springer-Verlag France 2011

Authors and Affiliations

  • R. Favory
    • 1
  • J. Poissy
    • 1
  • E. Parmentier
    • 1
  • D. Mathieu
    • 1
  1. 1.Pôle de réanimation, centre régional d’oxygénothérapie hyperbare, CHRU de Lilleuniversité Lille Nord de FranceLilleFrance

Personalised recommendations