Réanimation

, Volume 21, Issue 1, pp 80–87

Rééducation motrice dans le cadre d’un séjour en réanimation

Revue / Review

Résumé

Depuis quelques années, la revalidation précoce a pris une place prépondérante dans la prise en charge des malades de réanimation. Bien que des séquelles neuromusculaires aient été décrites depuis bien longtemps, on n’imaginait pas assez le rôle de l’alitement prolongé et de l’inactivité sur cette fonte et faiblesse musculaires. Actuellement, on comprend mieux les effets délétères des facteurs inflammatoires sur le muscle ainsi que les effets positifs de l’exercice sur ces mêmes facteurs. La revalidation doit être entreprise au plus tôt et, pour assurer la collaboration active du patient, la sédation doit être interrompue au plus vite. Cependant, même chez les patients comateux ou peu collaborant, on peut pratiquer sans crainte des mobilisations passives afin de préserver les amplitudes articulaires. La participation active apporte bien sûr beaucoup plus de bénéfice, ce d’autant plus qu’on peut aussi y ajouter des supports instrumentaux qui permettent de varier les programmes d’exercices. Avant de prendre en charge le malade, le kinésithérapeute devra s’assurer que le patient pourra tolérer le programme. Pour cela, il faut prendre en considération l’état respiratoire, hémodynamique et neurologique avant de fixer une intensité, une longueur et une fréquence de traitement. Souvent, cette prise en charge ne peut se faire que par la collaboration d’une équipe pluridisciplinaire motivée et si possible par la présence d’un nombre plus important de kinésithérapeutes au sein des unités de soins intensifs.

Mots clés

Rééducation Réanimation Kinésithérapie 

Early rehabilitation for critically ill patients

Abstract

In recent years, early rehabilitation has become an important goal in order to improve the outcome of patients in the intensive care unit (ICU). Although neuromuscular sequelae have been described long ago, prolonged bed rest and inactivity result in muscle loss and weakness. The deleterious effects of inflammatory factors on muscle as well as the beneficial effects of exercise are now better understood. Revalidation must be initiated as early as possible in order to allow the patient’s active collaboration, while sedation must be avoided as much as possible. However, even comatose or non-collaborative patients can be passively mobilized to avoid joint contractures. Active mobilization is beneficial and technical supports can be added to improve exercises. Before initiating treatment, physiotherapists must assess the respiratory, haemodynamic, and neurological functions of the patients to ensure feasibility and safety of these procedures. Then, they define timing, intensity and frequency of exercises. These programs often require the collaboration of a motivated multidisciplinary team as well as a larger number of physiotherapists in the ICU.

Keywords

Rehabilitation Intensive care unit Physiotherapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Kress JP (2009) Clinical trials of early mobilization of critically ill patients. Crit Care Med 37:S442–S447PubMedCrossRefGoogle Scholar
  2. 2.
    Carson SS, Bach PB (2002) The epidemiology and costs of chronic critical illness. Crit Care Clin 18:461–476PubMedCrossRefGoogle Scholar
  3. 3.
    Griffiths RD, Hall JB (2010) Intensive care unit-acquired weakness. Crit Care Med 38:779–787PubMedCrossRefGoogle Scholar
  4. 4.
    Fletcher SN, Kennedy DD, Ghosh IR, et al (2003) Persistent neuromuscular and neurophysiologic abnormalities in long-term survivors of prolonged critical illness. Crit Care Med 31:1012–1016PubMedCrossRefGoogle Scholar
  5. 5.
    Combes A, Costa MA, Trouillet JL, et al (2003) Morbidity, mortality, and quality-of-life outcomes of patients requiring >or=14 days of mechanical ventilation. Crit Care Med 31:1373–1381PubMedCrossRefGoogle Scholar
  6. 6.
    Herridge MS (2002) Long-term outcomes after critical illness. Curr Opin Crit Care 8:331–336PubMedCrossRefGoogle Scholar
  7. 7.
    Herridge MS, Cheung AM, Tansey CM, et al (2003) One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med 348:683–693PubMedCrossRefGoogle Scholar
  8. 8.
    Herridge MS, Tansey CM, Matte A, et al (2011) Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med 364:1293–1304PubMedCrossRefGoogle Scholar
  9. 9.
    Chiang LL, Wang LY, Wu CP, et al (2006) Effects of physical training on functional status in patients with prolonged mechanical ventilation. Phys Ther 86:1271–1281PubMedCrossRefGoogle Scholar
  10. 10.
    Griffiths RD, Palmer TE, Helliwell T, et al (1995) Effect of passive stretching on the wasting of muscle in the critically ill. Nutrition 11:428–432PubMedGoogle Scholar
  11. 11.
    Morris PE, Goad A, Thompson C, et al (2008) Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit Care Med 36:2238–2243PubMedCrossRefGoogle Scholar
  12. 12.
    Nava S (1998) Rehabilitation of patients admitted to a respiratory intensive care unit. Arch Phys Med Rehabil 79:849–854PubMedCrossRefGoogle Scholar
  13. 13.
    Zanotti E, Felicetti G, Maini M, Fracchia C (2003) Peripheral muscle strength training in bed-bound patients with COPD receiving mechanical ventilation: effect of electrical stimulation. Chest 124:292–296PubMedCrossRefGoogle Scholar
  14. 14.
    Bergel RR (1990) Disabling effects of inactivity and importance of physical conditioning. A historical perspective. Rheum Dis Clin North Am 16:791–801PubMedGoogle Scholar
  15. 15.
    Burns SM, Egloff MB, Ryan B, et al (1994) Effect of body position on spontaneous respiratory rate and tidal volume in patients with obesity, abdominal distension and ascites. Am J Crit Care 3:102–106PubMedGoogle Scholar
  16. 16.
    Harper CM, Lyles YM (1988) Physiology and complications of bed rest. J Am Geriatr Soc 36:1047–1054PubMedGoogle Scholar
  17. 17.
    Mentzelopoulos SD, Roussos C, Zakynthinos SG (2005) Static pressure volume curves and body posture in acute respiratory failure. Intensive Care Med 31:1683–1692PubMedCrossRefGoogle Scholar
  18. 18.
    Rubin M (1988) The physiology of bed rest. Am J Nurs 88:50–56PubMedGoogle Scholar
  19. 19.
    Mallis MM, DeRoshia CW (2005) Circadian rhythms, sleep, and performance in space. Aviat Space Environ Med 76:B94–B107PubMedGoogle Scholar
  20. 20.
    Allen C, Glasziou P, Del Mar C (1999) Bed rest: a potentially harmful treatment needing more careful evaluation. Lancet 354:1229–1233PubMedCrossRefGoogle Scholar
  21. 21.
    Honkonen SE, Kannus P, Natri A, et al (1997) Isokinetic performance of the thigh muscles after tibial plateau fractures. IntbOrthop 21:323–326Google Scholar
  22. 22.
    Bar-Shai M, Carmeli E, Coleman R, et al (2005) The effect of hindlimb immobilization on acid phosphatase, metalloproteinases and nuclear factor-kappaB in muscles of young and old rats. Mech Ageing Dev 126:289–297PubMedCrossRefGoogle Scholar
  23. 23.
    Kortebein P, Ferrando A, Lombeida J, et al (2007) Effect of 10 days of bed rest on skeletal muscle in healthy older adults. JAMA 297:1772–1774PubMedCrossRefGoogle Scholar
  24. 24.
    Ferrando AA, Lane HW, Stuart CA, et al (1996) Prolonged bed rest decreases skeletal muscle and whole body protein synthesis. Am.J.Physiol 270:E627–E633PubMedGoogle Scholar
  25. 25.
    Ferrando AA, Paddon-Jones D, Wolfe RR (2006) Bed rest and myopathies. Curr Opin Clin Nutr Metab Care 9:410–415PubMedCrossRefGoogle Scholar
  26. 26.
    Finn PJ, Plank LD, Clark MA, et al (1996) Progressive cellular dehydration and proteolysis in critically ill patients. Lancet 347:654–656PubMedCrossRefGoogle Scholar
  27. 27.
    Paddon-Jones D, Sheffield-Moore M, Cree MG, et al (2006) Atrophy and impaired muscle protein synthesis during prolonged inactivity and stress. J Clin Endocrinol Metab 91:4836–4841PubMedCrossRefGoogle Scholar
  28. 28.
    Giger JM, Haddad F, Qin AX, et al (2005) Effect of unloading on type I myosin heavy chain gene regulation in rat soleus muscle. J Appl Physiol 98:1185–1194PubMedCrossRefGoogle Scholar
  29. 29.
    Jones SW, Hill RJ, Krasney PA, et al (2004) Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with the regulation of skeletal muscle mass. FASEB J 18:1025–1027PubMedGoogle Scholar
  30. 30.
    Krawiec BJ, Frost RA, Vary TC, et al (2005) Hindlimb casting decreases muscle mass in part by proteasome-dependent proteolysis but independent of protein synthesis. Am J Physiol Endocrinol Metab 289:E969–E980PubMedCrossRefGoogle Scholar
  31. 31.
    Stevenson EJ, Giresi PG, Koncarevic A, Kandarian SC (2003) Global analysis of gene expression patterns during disuse atrophy in rat skeletal muscle. J Physiol 551:33–48PubMedCrossRefGoogle Scholar
  32. 32.
    Appell HJ (1990) Muscular atrophy following immobilisation. A review. Sports Med 10:42–58CrossRefGoogle Scholar
  33. 33.
    Baker JH, Matsumoto DE (1988) Adaptation of skeletal muscle to immobilization in a shortened position. Muscle Nerve 11:231–244PubMedCrossRefGoogle Scholar
  34. 34.
    Leivo I, Kauhanen S, Michelsson JE (1998) Abnormal mitochondria and sarcoplasmic changes in rabbit skeletal muscle induced by immobilization. APMIS 106:1113–1123PubMedCrossRefGoogle Scholar
  35. 35.
    Topp R, Ditmyer M, King K, et al (2002) The effect of bed rest and potential of prehabilitation on patients in the intensive care unit. AACN Clin Issues 13:263–276PubMedCrossRefGoogle Scholar
  36. 36.
    Bozza FA, Salluh JI, Japiassu AM, et al (2007) Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis. Crit Care 11:R49PubMedCrossRefGoogle Scholar
  37. 37.
    Bruunsgaard H (2005) Physical activity and modulation of systemic low-level inflammation. J Leukoc Biol 78:819–835PubMedCrossRefGoogle Scholar
  38. 38.
    Ji LL (1996) Exercise, oxidative stress, and antioxidants. Am J Sports Med 24:S20–S24PubMedGoogle Scholar
  39. 39.
    Pawlak W, Kedziora J, Zolynski K, et al (1998) Free radicals generation by granulocytes from men during bed rest. J Gravit Physiol 5:131–132Google Scholar
  40. 40.
    Pawlak W, Kedziora J, Zolynski K, et al (1998) Effect of long term bed rest in men on enzymatic antioxidative defence and lipid peroxidation in erythrocytes. J Gravit Physiol 5:163–164Google Scholar
  41. 41.
    Kim H, Choi-Kwon S (2011) Changes in nutritional status in ICU patients receiving enteral tube feeding: A prospective descriptive study. Intensive Crit Care NursGoogle Scholar
  42. 42.
    Pingleton SK (2001) Nutrition in chronic critical illness. Clin Chest Med 22:149–163PubMedCrossRefGoogle Scholar
  43. 43.
    De Jonghe B, Bastuji-Garin S, Sharshar T, et al (2004) Does ICU-acquired paresis lengthen weaning from mechanical ventilation? Intensive Care Med 30:1117–1121PubMedCrossRefGoogle Scholar
  44. 44.
    Stevens RD, Dowdy DW, Michaels RK, et al (2007) Neuromuscular dysfunction acquired in critical illness: a systematic review. Intensive Care Med 33:1876–1891PubMedCrossRefGoogle Scholar
  45. 45.
    De Jonghe B, Sharshar T, Lefaucheur JP, et al (2002) Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA 288:2859–2867PubMedCrossRefGoogle Scholar
  46. 46.
    Hermans G, Wilmer A, Meersseman W, et al (2007) Impact of intensive insulin therapy on neuromuscular complications and ventilator dependency in the medical intensive care unit. Am J Respir Crit Care Med 175:480–489PubMedCrossRefGoogle Scholar
  47. 47.
    Larsson L, Li X, Edstrom L, et al (2000) Acute quadriplegia and loss of muscle myosin in patients treated with nondepolarizing neuromuscular blocking agents and corticosteroids: mechanisms at the cellular and molecular levels. Crit Care Med 28:34–45PubMedCrossRefGoogle Scholar
  48. 48.
    Gomez-Cabrera MC, Domenech E, Vina J (2008) Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med 44:126–131PubMedCrossRefGoogle Scholar
  49. 49.
    Febbraio MA, Pedersen BK (2002) Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J 16:1335–1347PubMedCrossRefGoogle Scholar
  50. 50.
    Petersen AM, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98:1154–1162PubMedCrossRefGoogle Scholar
  51. 51.
    Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406PubMedCrossRefGoogle Scholar
  52. 52.
    Winkelman C (2007) Inactivity and inflammation in the critically ill patient. Crit Care Clin 2:21–34CrossRefGoogle Scholar
  53. 53.
    Adamopoulos S, Parissis J, Karatzas D, et al (2002) Physical training modulates proinflammatory cytokines and the soluble Fas/soluble Fas ligand system in patients with chronic heart failure. J Am Coll Cardiol 39:653–663PubMedCrossRefGoogle Scholar
  54. 54.
    Larsen AI, Lindal S, Aukrust P, et al (2002) Effect of exercise training on skeletal muscle fibre characteristics in men with chronic heart failure. Correlation between skeletal muscle alterations, cytokines and exercise capacity. Int J Cardiol 83:25–32PubMedCrossRefGoogle Scholar
  55. 55.
    Yende S, Waterer GW, Tolley EA, et al (2006) Inflammatory markers are associated with ventilatory limitation and muscle dysfunction in obstructive lung disease in well functioning elderly subjects. Thorax 61:10–16PubMedCrossRefGoogle Scholar
  56. 56.
    Ryan JL, Carroll JK, Ryan EP, et al (2007) Mechanisms of cancer-related fatigue. Oncologist 12(Suppl 1):22–34PubMedCrossRefGoogle Scholar
  57. 57.
    Norrenberg M, Vincent JL (2000) A profile of European intensive care unit physiotherapists. European Society of Intensive Care Medicine. Intensive Care Med 26:988–994Google Scholar
  58. 58.
    Hanekom S, Gosselink R, Dean E, et al (2011) The development of a clinical management algorithm for early physical activity and mobilization of critically ill patients: synthesis of evidence and expert opinion and its translation into practice. Clin RehabilGoogle Scholar
  59. 59.
    Stiller K (2007) Safety issues that should be considered when mobilizing critically ill patients. Crit Care Clin 23:35–53PubMedCrossRefGoogle Scholar
  60. 60.
    Hermans G, De Jonghe B, Bruyninckx F, Van den BG (2009) Interventions for preventing critical illness polyneuropathy and critical illness myopathy. Cochrane Database Syst Rev CD006832Google Scholar
  61. 61.
    Vanpee G, Segers J, Van Mechelen H, et al (2011) The interobserver agreement of handheld dynamometry for muscle strength assessment in critically ill patients. Crit Care MedGoogle Scholar
  62. 62.
    De Jonghe B, Bastuji-Garin S, Fangio P, et al (2005) Sedation algorithm in critically ill patients without acute brain injury. Crit Care Med 33:120–127PubMedCrossRefGoogle Scholar
  63. 63.
    Sandri M, Lin J, Handschin C, et al (2006) PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci USA 103:16260–16265PubMedCrossRefGoogle Scholar
  64. 64.
    Stein TP, Wade CE (2005) Metabolic consequences of muscle disuse atrophy. J Nutr 135:1824S–1828SPubMedGoogle Scholar
  65. 65.
    Clavet H, Hebert PC, Fergusson D, et al (2008) Joint contracture following prolonged stay in the intensive care unit. CMAJ 178:691–697PubMedCrossRefGoogle Scholar
  66. 66.
    Gassner RJ, Buckley MJ, Studer RK, et al (2000) Interaction of strain and interleukin-1 in articular cartilage: effects on proteoglycan synthesis in chondrocytes. Int J Oral Maxillofac Surg 29:389–394PubMedCrossRefGoogle Scholar
  67. 67.
    Gerovasili V, Stefanidis K, Vitzilaios K, et al (2009) Electrical muscle stimulation preserves the muscle mass of critically ill patients: a randomized study. Crit Care 13:R161PubMedCrossRefGoogle Scholar
  68. 68.
    Routsi C, Gerovasili V, Vasileiadis I, et al (2010) Electrical muscle stimulation prevents critical illness polyneuromyopathy: a randomized parallel intervention trial. Crit Care 14:R74PubMedCrossRefGoogle Scholar
  69. 69.
    Kasper CE, Talbot LA, Gaines JM (2002) Skeletal muscle damage and recovery. AACN Clin Issues 13:237–247PubMedCrossRefGoogle Scholar
  70. 70.
    Bailey P, Thomsen GE, Spuhler VJ, et al (2007) Early activity is feasible and safe in respiratory failure patients. Crit Care Med 35:139–145PubMedCrossRefGoogle Scholar
  71. 71.
    Pohlman MC, Schweickert WD, Pohlman AS, et al (2010) Feasibility of physical and occupational therapy beginning from initiation of mechanical ventilation. Crit Care Med 38:2089–2094PubMedCrossRefGoogle Scholar
  72. 72.
    Schweickert WD, Pohlman MC, Pohlman AS, et al (2009) Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 373:1874–1882PubMedCrossRefGoogle Scholar
  73. 73.
    Burtin C, Clerckx B, Robbeets C, et al (2009) Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med 37:2499–2505PubMedCrossRefGoogle Scholar
  74. 74.
    De Prato C, Bastin MH, Preiser JC (2009) Sarcopénie en réanimation. Réanimation 18:486–492CrossRefGoogle Scholar
  75. 75.
    Chang AT, Boots R, Hodges PW, Paratz J (2004) Standing with assistance of a tilt table in intensive care: a survey of Australian physiotherapy practice. Aust J Physiother 50:51–54PubMedGoogle Scholar
  76. 76.
    Chi L, Masani K, Miyatani M, et al (2008) Cardiovascular response to functional electrical stimulation and dynamic tilt table therapy to improve orthostatic tolerance. J Electromyogr Kinesiol 18:900–907PubMedCrossRefGoogle Scholar
  77. 77.
    Czell D, Schreier R, Rupp R, et al (2004) Influence of passive leg movements on blood circulation on the tilt table in healthy adults. J Neuroeng Rehabil 1:4PubMedCrossRefGoogle Scholar
  78. 78.
    Needham DM, Truong AD, Fan E (2009) Technology to enhance physical rehabilitation of critically ill patients. Crit Care Med 37: S436–S441PubMedCrossRefGoogle Scholar
  79. 79.
    Gosselink R, Bott J, Johnson M, et al (2008) Physiotherapy for adult patients with critical illness: recommendations of the European Respiratory Society and European Society of Intensive Care Medicine Task Force on Physiotherapy for Critically Ill Patients. Intensive Care Med 34:188–199CrossRefGoogle Scholar
  80. 80.
    O’Connor ED, Walsham J (2009) Should we mobilise critically ill patients? A review. Crit Care Resusc 11:290–300PubMedGoogle Scholar
  81. 81.
    Rochester CL (2009) Rehabilitation in the intensive care unit. Semin Respir Crit Care Med 30:656–669PubMedCrossRefGoogle Scholar
  82. 82.
    Truong AD, Fan E, Brower RG, Needham DM (2009) Benchto-bedside review: mobilizing patients in the intensive care unit-from pathophysiology to clinical trials. Crit Care 13:216PubMedCrossRefGoogle Scholar
  83. 83.
    Thomsen GE, Snow GL, Rodriguez L, Hopkins RO (2008) Patients with respiratory failure increase ambulation after transfer to an intensive care unit where early activity is a priority. Crit Care Med 36:1119–1124PubMedCrossRefGoogle Scholar
  84. 84.
    Morris PE, Griffin L, Berry M, et al (2011) Receiving early mobility during an intensive care unit admission is a predictor of improved outcomes in acute respiratory failure. Am J Med Sci 341:373–377PubMedCrossRefGoogle Scholar
  85. 85.
    Clavet H, Hebert PC, Fergusson DA, et al (2011) Joint contractures in the intensive care unit: association with resource utilization and ambulatory status at discharge. Disabil Rehabil 33:105–112PubMedCrossRefGoogle Scholar
  86. 86.
    Hodgin KE, Nordon-Craft A, McFann KK, et al (2009) Physical therapy utilization in intensive care units: results from a national survey. Crit Care Med 37:561–566PubMedCrossRefGoogle Scholar
  87. 87.
    Needham DM, Wang W, Desai SV, et al (2007) Intensive care unit exposures for long-term outcomes research: development and description of exposures for 150 patients with acute lung injury. J Crit Care 22:275–284PubMedCrossRefGoogle Scholar
  88. 88.
    Winkelman C, Higgins PA, Chen YJ (2005) Activity in the chronically critically ill. Dimens Crit Care Nurs 24:281–290PubMedCrossRefGoogle Scholar
  89. 89.
    Bahadur K, Jones G, Ntounmenopoulos G (2008) An observational study of sitting out of bed in intracheostomised patients in the intensive care unit. Physiotherapy 94:300–305CrossRefGoogle Scholar
  90. 90.
    Hopkins RO, Spuhler VJ, Thomsen GE (2007) Transforming ICU culture to facilitate early mobility. Crit Care Clin 23:81–96PubMedCrossRefGoogle Scholar
  91. 91.
    Kress JP, Hall JB (2006) Sedation in the mechanically ventilated patient. Crit Care Med 34:2541–2546PubMedCrossRefGoogle Scholar
  92. 92.
    Salgado DR, Favory R, Goulart M, et al (2011) Toward less sedation in the intensive care unit: a prospective observational study. J Crit Care 26:113–121PubMedCrossRefGoogle Scholar

Copyright information

© Société de réanimation de langue française (SRLF) and Springer-Verlag France 2011

Authors and Affiliations

  1. 1.Service des soins intensifshôpital académique Erasme ULBBruxellesBelgique

Personalised recommendations